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Chapter 1

Overview

1.1 Purpose

The BABAR Statistics Working Group was formed in order to address ques-
tions of statistics that come up in the analysis and presentation of results from
the experiment. The idea is to prepare recommended statistical methodolo-
gies in response to these questions. This report is the result.

The report is organized into two major parts: A pedagogical part which
provides the language and background of statistics, and a recommendations
part which gives the recommended procedures from the working group. The
charge to the working group is included as Appendix A.

In addition to this report, there is a Statistics Working Group hypernews
forum for discussions, and a web page. The hypernews forum is:

http://babar-hn.slac.stanford.edu:5090/HyperNews/get/Statistics.html
The Statistics Working Group home page is at URL:

http://www.slac.stanford.edu/BFROOT/www/Statistics/
From that page, a “Statistics Bibliography” may be reached, which includes
links to other discussions within HEP, as well as more general references.
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Part I

Pedagogy
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Chapter 2

Probability

2.1 Probability

Probability is an axiomatic theory in mathematics defined by three axioms.
Probability: A probability, P (E), is a real additive set function defined

on sets E in sample space S satisfying the properties (axioms):

1. If E is a subset (event) in S, then P (E) ≥ 0.

2. P (S) = 1.

3. P (E1 ∪ E2 ∪ · · ·) = P (E1) + P (E2) + · · · for any sequence (finite or
infinite) of disjoint events E1, E2, . . . in S.

Each real-world quantity that fulfills these axioms can be regarded as a
probability. There are in fact two such use-cases, which are related, but differ
and should be kept in mind as separate entities:

One “physical meaning” is given to probability in terms of the Frequency
Interpretation: If we draw an element from our sample space S many times,
we will obtain event E in a fraction P (E) of the samplings. It is generally
only in our minds that we do this repitition, so this is a conceptual description
in typical practice, although in the context of frequentist statistics a more
concrete description can be taken.

There is another common interpretation, which applies to a single event,
when an element is drawn once and cannot be repeated many times. This
interpretation is often called “subjective probability” and is associated with
the “degree of belief” in event E. It summarises the expectation on the
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unknown occurrence of this event, and is likewise expressed in terms of a
probability.

Rolling dice can be used as an example for both representations.
The “frequency” probability is in the statement: “the probablilty that a

rolled die shows 6 is 1/6”.
The “subjective” probability is in the statement: “the probablilty that

this rolled die will show 6 is 1/6”.
The difference in the two statements is, that the first talks about any

die, i.e., about a large sample of rolled dice, where indeed the frequency
converges to 1/6 (if the die is unbiased). The second statement talks about
one single event. Here, the frequency is in fact either 100% or 0. But it is not
(yet) known which of the two is true, hence one can only express a “degree
of belief” about what will happen, or has already happened but is unknown.

2.2 Probabilities and PDFs

Theorem: (Rule of Complementation)

P (∩ni=1Ẽi) = 1− P (∪ni=1Ei).

Theorem: (Arbitrary union)

P (∪ni=1Ei) =
n∑
i=1

P (Ei)−
n∑
j>i

P (Ei ∩ Ej) (2.1)

+
n∑

k>j>i

P (Ei ∩ Ej ∩Ek) (2.2)

· · · (2.3)

+(−)n−1P (E1 ∩ E2 · · · ∩En). (2.4)

We find it useful to map abstract sample spaces into real numbers:
Random Variable: A Random Variable (RV) is a variable that takes on

a distinct value for each element of the sample space.
A random variable may vary over a discrete or continuous spectrum (or a
combination).

If x is a discrete RV, we say that p(x) ≡ P [E(x)] is the probability of x,
where E(x) is the inverse mapping of x onto the sample space and we have:∑

all x

p(x) = 1.
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If x is a continuous RV, we take the appropriate continuum limit of the
above notion, with

p(x)dx ≡ P [E(y : x ≤ y < x+ dx)]

(in the limit). Here p(x) is called a “probability density function” (pdf).
The “cumulative distribution function” (cdf) for RV x is the proba-

bility of not exceeding a value x.
A “joint probability distribution” is one in which the abstract sample

space has been mapped into a multidimensional RV space (natural if the
sample space is describable as a product space). In this case we often collect
the RVs into a vector x.

Suppose we have a joint pdf, p(x, y), in random variables x, y, and let1:

q(x) ≡
∫ ∞

−∞
p(x, y)dy (2.5)

r(y) ≡
∫ ∞

−∞
p(x, y)dx. (2.6)

Independence: Two random variables, x and y, are statistically inde-
pendent iff:

p(x, y) = q(x)r(y).

The Expectation Value of a function, f , of a random variable x, is defined
by:

〈f(x)〉 =
∫
all x

f(x)p(x)dx,

with the obvious generalization to joint pdfs.
Theorem: (Independence) If x and y are two statistically independent

RVs, then
〈f(x)g(y)〉 = 〈f(x)〉〈g(y)〉.

Mean: The mean of a random variable is its expectation value.
Variance: The variance of a random variable x is the square of the stan-

dard deviation, and is the expectation value:

var(x) = σ2
x = 〈(x− 〈x〉)2〉 (2.7)

= 〈x2〉 − 〈x〉2. (2.8)

1For simplicity, we’ll often treat our random variables as continuous, but the general-
ization to discrete RVs is not difficult
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The variance generalizes in the multivariate case to the Covariance Ma-
trix (alternatively known as theMoment Matrix, the Error Matrix, the
Variance Matrix, or the Dispersion Matrix) with elements:

Mij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (2.9)

= 〈xixj〉 − 〈xi〉〈xj〉. (2.10)

Note that the diagonal elements are simply the individual variances. The
off-diagonal elements are called covariances.

The correlation coefficients, measuring the degree of linear correlation,
are given by:

ρij =
Mij√
MiiMjj

.

We are often interested in the probability distribution for quantities y =
(y1, y2, . . . , yn) = f(x), given the probability distribution for the (perhaps
measured) quantities x = (x1, x2, . . . , xn). If the y’s are linearly independent,
the new pdf for y is simply found by:

q(y)dn(y) = q[f(x)]

∣∣∣∣∣ ∂f∂x
∣∣∣∣∣ dn(x) (2.11)

= p(x)dn(x). (2.12)

Hence,

q(y) =
p[f−1(y)]∣∣∣ ∂f
∂x

∣∣∣ [f−1(y)]
.

Rather than determining the entire transformation, we are often content
to learn the new moment matrix. If y = (y1, y2, . . . , yk) is linearly dependent
on x = (x1, x2, . . . xn), i.e.,

y = Tx+ a,

where T is a k × n transformation matrix, then the moment matrix for y is
given by:

My = TMxT
†.

If y is non-linearly dependent on x, we often make the linear approxima-
tion anyway, letting

Tij =
∂yi
∂xj

∣∣∣∣∣
x∼〈x〉

.
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It should be kept in mind though, that this corresponds to taking the first
term in a Taylor series expansion, and may not be a good approximation for
some transformations, or far away from 〈x〉.
Example: Suppose k = 1. Then, in the linear approximation:

My = σ2
y = TMxT

† (2.13)

=
n∑
i=1

n∑
j=1

∂y

∂xi

∣∣∣∣∣
x∼〈x〉

∂y

∂xj

∣∣∣∣∣
x∼〈x〉

(Mx)ij . (2.14)

If the xi’s are statistically independent, then

(Mx)ij = σ2
xi
δij , (2.15)

and hence,

σ2
y =

n∑
i=1

 ∂y

∂xi

∣∣∣∣∣
x∼〈x〉

2

σ2
xi
. (2.16)

This is our most commonly-used form for propagating errors. Just remem-
ber the assumptions of linearity and independence, as well as the typically
approximate knowledge of 〈x〉!

2.3 Bayes Theorem

We define a Conditional Probability, s(x|y) or t(y|x), according to:

p(x, y) = s(x|y)r(y) (2.17)

= t(y|x)q(x). (2.18)

We read s(x|y) as telling us the “probability of x, given y.”
We have, e.g.,

s(x|y) =
p(x, y)

r(y)
(2.19)

=
t(y|x)q(x)∫∞
−∞ p(x, y)dx

. (2.20)

This important result in probability theory is known as Bayes’ Theorem.
It is used in a fundamental way in “Bayesian statistics”.
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2.4 Central Limit Theorem

Theorem: (Central Limit Theorem) Let (x1, x2, . . . , xn) be a set of n
independent random variables (e.g., measurement results) from
in general different distributions with means (µ1, µ2, . . . , µn) and
(finite) variances (σ2

1, σ
2
2, . . . , σ

2
n). Then, if S =

∑n
i=1 xi is the sum

of these numbers, the distribution of S approaches the normal
distribution as n → ∞, with mean 〈S〉 = ∑ni=1 µi and variance
〈(S − 〈S〉)2〉 = ∑ni=1 σ

2
i .

A special case is the sample mean S/n = 1
n

∑n
i=1 xi of a sample of values

from one distribution with mean µ and variance σ2, where 〈S/n〉 = µ and
〈(S/n− 〈S/n〉)2〉 = σ2/n.

We make frequent use of this theorem in statistical analysis. The normal
(or “Gaussian”) distribution is well-understood and is “well-behaved”. While
we often sample from non-normal distributions, the properties of the normal
distribution are so desirable that the approximation by a normal distribution
is often used. The underlying justification for this is the central limit theorem.
But it is important to understand that it is an approximation, and not to
push it outside its realm of validity. The expectations for the sample mean
and variance, however, are exact results even for non-Gaussian distributions,
as long as those quantities exist. Hence, for example, “errors” can be added
quadratically even if the distributions are not Gaussian.
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Chapter 3

Basic Statistical Notions

The previous chapter summarized the elements of probability theory of rele-
vance to the purposes of this report. We turn now to the subject of “statis-
tics”, having to do, for present purposes, with the extraction of information
from a random sampling process. This is sometimes referred to as the “in-
verse probability problem”: Instead of addressing the sampling of a random
variable from some specified probability distribution, we imagine that we are
interested in learning something about a (not completely specified) proba-
bility distribution by taking random samples from it. In this chapter are
collected several notions basic to the practice of statistics. Here are defined
also some of the basic terms in common use.

3.1 Goals of Statistics: Bayesian and Frequen-

tist Statistics

Because of the substantial confusion among particle physicists concerning the
subjects of “Bayesian” and “frequentist” (or “classical”1) statistics, a brief
discussion is appropriate.

An intuitive way to think about these two branches of statistics is to
regard the frequentist approach as being directed at summarizing relevant
information content in a dataset; whereas the goal of the Bayesian is to infer
something about the underlying sampling distribution. Thus, it is useful to

1Beware that some authors use “classical” to refer to Bayesian statistics. After all, it
preceded frequentist statistics!
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connect the notion of “information” with the frequentist, and the notion of
“decision” with the Bayesian. Of course, like any good decision-maker, the
Bayesian uses whatever information is available, but the difference is that
the Bayesian doesn’t stop there. Instead, s/he proceeds to a conclusion cor-
responding to a “degree-of-belief” concerning the “truth” of some statement.

It may be argued that the first goal of an experimenter is to summarize
the information contained in the data, as objectively as possible. The (fre-
quentist) approach to achieving this goal consists of making some statement
which has the property that it would be true in some specified fraction of
trials (repetitions of the experiment), and false in the remaining fraction. It
is important to realize that the frequentist typically doesn’t know or care
what the truth value is for any given sampling.

As the experimenter happens to also be a physicist, a second goal is to
summarize what s/he thinks the “truth” really is, based on the information
in the experiment, and perhaps other input. This is the domain of Bayesian
statistics. While the first goal should be a requirement in any publication of
results, the second is optional – it can be left to the readers to form their
own conclusions concerning the physical implications of the measurement,
but the reader can’t divine the information, so that must be presented.

It may be noted that people have sometimes proposed methodologies
which attempt to satisfy Bayesian urges (e.g., never make a statment that is
known to be in the “false” category), while maintaining frequentist validity.
This may be a noble goal, but the resulting methodologies are not especially
attractive for various reasons, and such algorithms are not advocated here.
Instead, it is simply admitted that there is more than one goal, and that
different techniques may be optimal for each.

A more expansive discussion of this distinction between the classical (in-
formation theory) and the Bayesian (decision theory) statistical methodolo-
gies may be found in a paper by F. James and M. Roos[1]. They address
in particular the example of neutrino mass observations near the “physical”
boundary.

3.2 Confidence Level

We shall use the terms “significance level” and “confidence level” interchange-
ably. The meaning depends on the context, as follows:

Confidence Level: In frequency statistics, the term “confidence level” is

14



used to refer to the probability that the statement made will
be correct, in the frequency sense. Thus, for a “68% confidence
interval”, the confidence level is 68%, because the interval in-
cludes the true value of the parameter in 68% of the trials.
Likewise, for a hypothesis test, the “size of the test” may be
referred to as a confidence level, because that is the probability
with which the null hypothesis is accepted, assuming the null
hypothesis is correct.

In Bayesian statistics, the term “confidence level” is used
to refer to the degree of belief in the statement made, that is,
to the size of an integral for some region over the posterior
probability distribution.

In this document, the symbol α will usually be used when referring to a
confidence level. Other terms that often appear in the literature are “confi-
dence coefficient”, “probability content”, “degree of confidence”, etc. There
is not a lot of uniformity in usage. Note also that some authors define this
quantity to be one minus the definition here.

3.3 Likelihood Function

An experimental measurement is considered to be a sampling from a proba-
bility distribution, describing the probability of observing any given result in
the sample space of possible outcomes. This distribution is often referred to
as the “sampling distribution”. Thus, the complete description of the experi-
ment consists in giving the result of the measurement (“sampling”), together
with the sampling distribution. Typically, the sampling distribution depends
on the values of unknown parameter(s), which we are trying to learn about.

The probability distribution may be contrasted with the “likelihood func-
tion”:

Likelihood Function If an experiment has been performed resulting in a
measurement x, drawn from some probability distribution with pop-
ulation parameter θ, the likelihood function for that experiment is
defined as the probability distribution function evaluated at the ob-
served value of x.

Such a likelihood function may be denoted by L(θ; x), and is treated as a
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function of θ in algorithms concerned with summarizing information relevant
to θ, or in making inferences about the value of θ.
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Chapter 4

Point Estimation

The problem of point estimation is to arrive at a “best” estimate of the value
of an unknown parameter governing the sampling distribution. The choice
of estimator, that is, the definition of “best,” depends on various possible
criteria. We describe these below in a heuristic way. More careful definitions,
in terms of εs and δs can be found in texts such as Kendall and Stuart, but
are generally no more essential than are the εs and δs of calculus in doing
day-to-day calculations.

4.1 Consistency, Bias, Efficiency, and Suffi-

ciency

Our task then is to determine some unknown parameter or parameters asso-
ciated with a probability distribution function (PDF) whose form is known.
We are to use some data - random variables - and some rule associating an
estimate of the parameter(s) θ with the data t1, t2 . . ..

Consider some PDF and ask how we might find its mean µ and variance
(σ2). Given n data points we might take as estimators1 for µ and σ

Eµ =
1

n

∑
ti

Eσ2 =
1

n

(∑
t2i −

1

n
(
∑

tj)
2
)

(4.1)

1We use here the notation Eθ to stand for an estimator for quantity θ. Another common
notation for the same quantity is θ̂, which we shall also use elsewhere.
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Now take expectation values with respect to the true distribution, what-
ever it is. Then

〈t〉 = µ〈
(t− µ)2

〉
=
〈
t2
〉
− µ2 = σ2 (4.2)

so we find

〈Eµ〉 =
1

n

∑ 〈ti〉 = µ

〈Eσ2〉 =
1

n

〈∑
(t2i −

1

n
(
∑

tj)
2)
〉

=

〈
n− 1

n2

∑
(t2i )−

1

n2

∑
i�=j

titj

〉

=
n− 1

n
(
〈
t2
〉
− µ2) =

n− 1

n
σ2 (4.3)

What we see is two different behaviors. The estimator for the mean has an
expectation value that is equal to the true mean for all n. On the other hand,
our estimator for the variance on average underestimates the true variance
for all n. We say that the estimator for the mean is unbiased because its
expectation value is the true value for any sample size. The estimator for
the variance is biased. However, the estimator for the variance is consistent
because asymptotically it converges to the true value. It might be thought
that we should always use an unbiased estimator, but this is not really so
important in practice because a bias of order 1/n is likely to be swamped by
a statistical uncertainty of order 1/

√
n.

What is important for sure is that we use a method that doesn’t introduce
any unnecessary uncertainty into the determination of the physical param-
eters of interest. That is, we would like an estimator of a parameter that
has the least variance, i.e., the least expected uncertainty. We state with-
out proof (see, e.g., Kendall and Stuart, v. 2, pp. 8-9 of 3rd Edition) the
following:
Theorem: (Exponential Form) Suppose the PDF is f(t, θ) and the ob-

served data are t1, t2, . . . tn. Form

lnL =
∑
i

ln f(ti, θ) (4.4)
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and calculate its derivative with respect to θ. If it can be written
in the form

∂ lnL
∂θ

= A(θ)[E(t1, t2, . . . tn)− g(θ)] (4.5)

then E(t1, t2, . . . tn) is an unbiased estimator of g(θ) with the
minimum possible variance and that variance is

var(E) = (dg/dθ)2

A(θ)
(4.6)

where

A(θ) = n
∫

dt
1

f

(
∂f

∂θ

)2

(4.7)

Such an estimator is called, imaginatively, a Minimum Vari-
ance Bound (MVB) estimator.

As a pertinent example take f = e−t/τ/τ so that we are trying to find the
lifetime. Now

∂ lnL
∂τ

= nτ−2[
1

n

∑
i

ti − τ ] (4.8)

so the mean of the measured decay times is an unbiased estimate of true
lifetime with variance

σ2 = τ/
√
n (4.9)

a satisfyingly familiar result. Note that if we ask whether we can get an
unbiased estimate of minimal variance for the decay rate Γ = 1/τ we find we
cannot! The reason is that [(1/n)

∑
i ti]

−1 is a biased estimator of Γ. This
underlines the relative lack of importance to be attached to having unbiased
estimators.

Usually we are not so concerned with corrections of order 1/n and are
happy enough to have estimators that asymptotically have minimal variance.
These are called efficient estimators of g(θ) and they have variance

var(E) =
(
dg
dθ

)2
n
∫
dt 1

f

(
∂f
∂θ

)2 (4.10)

In particular, an efficient estimator E of θ itself has variance

var(E) = 1

n
∫
dt 1

f

(
∂f
∂θ

)2 (4.11)
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Below we explain that the maximum likelihood method gives us asymptoti-
cally efficient estimators.

Given many measurements, ti, we can imagine forming many combina-
tions of them, each of which carries some information. For example, we could
form the estimators for the mean and variance as described above. Now if
we want to determine some particular parameter, the various combinations
we can form of the data may or may not be useful. Suppose there is one
combination that carries all the useful information, that is once that com-
bination is available, nothing else can be learned from the data no matter
what combination we form. We then call this particular statistic sufficient.
It turns out that this concept is closely related to the question of finding an
estimator whose variance is the minimum allowed by the general theorem
above. If there is an MVB estimator (and we’ve given the condition to de-
termine whether there is one), then that estimator is a sufficient statistic.
In the example above, we see that (

∑
ti)/n is a sufficient statistic for τ . It

is clear that if we find a sufficient statistic for θ, then we have a sufficient
statistics for any function of θ. For example, we found the the mean of the
decay times is a sufficient statistic for the lifetime and therefore for the decay
rate, as well.

4.2 Maximum Likelihood Method

TheMaximum Likelihood Method is a convenient means of determining
parameters in a fit to data. We suppose we are to determine a quantity θ by
fitting with a dataset {ti}. For simplicity, we assume that there is a single
distribution f(t, θ). It is normalized so that∫

dt f(t, θ) = 1 (4.12)

independent of A. The log-likelihood function for this dataset is

lnL =
∑
i

ln f(ti, θ) (4.13)

We will treat θ as a variable here, and indicate the true value of the
parameter by θ. As the number of data points increases, the likelihood
function converges to

lnL → n
∫

dt f(t, θ) ln f(t, θ) (4.14)
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since f(t, θ) gives the actual distribution of events in t.
The likelihood function is maximized when

∂ lnL
∂θ

= 0 (4.15)

provided, of course, that
∂2 lnL
∂θ2

< 0 (4.16)

The log-likelihood estimator of θ is the value of θ obtained by solving for the
maximum of the log-likelihood.

Now as the number of events increases, we see that

∂ lnL
∂θ

→ n
∫

dt f(t, θ)
1

f(t, θ)

∂f(t, θ)

∂θ
(4.17)

If we evaluate this at θ = θ we find it vanishes as a consequence of

∂

∂θ

∫
dt f(t, θ) = 0 (4.18)

Thus asymptotically the maximum likelihood occurs at the true value of the
parameter.

For each dataset we find a value of θ that maximizes the log-likelihood.
The values of θ we find will be (asymptotically) distributed in a normal
distribution around θ. With δθ = θ − θ, the probability distribution is

dP

dθ
=

1√
2πσ

e−
δθ2

2σ2 (4.19)

where
1

σ2
= −∂2 lnL

∂θ2
(4.20)

Asymptotically

∂2 lnL
∂θ2

→ n
∂2

∂θ2

∫
dt f(t, θ) ln f(t, θ) = −n

∫
dt

1

f

(
∂f

∂θ

)2

(4.21)

where everything is evaluated at θ. From this we find the famous asymptotic
relation

σ−2 = n
∫

dt
1

f

(
∂f

∂θ

)2

(4.22)
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which shows that the log-likelihood estimator is efficient.
Often we have events that fall into separate categories, each of which

has its own distribution. Suppose there are two categories with distributions
f1(t, θ) and f2(t, θ). If these are normalized so that∫

dt f1(t, θ) +
∫

dt f2(t, θ) = 1 (4.23)

then everything will work as before. The log-likelihood function is simply
the sum of two pieces, where each data point contributes to the appropriate
sum:

lnL =
∑
i

ln f1(ti, θ) +
∑
j

ln f2(tj , θ) (4.24)

The corresponding σ is given by

σ−2 = n

∫ dt
1

f1

(
∂f1

∂θ

)2

+
∫

dt
1

f2

(
∂f2

∂θ

)2
 (4.25)

As a pertinent example consider the time distribution in B → J/ψKS. If
the opposite B is tagged as a B0 the distribution is

f+(DA; t) =
Γ

4
e−Γ|t|(1 +DA sin∆mt) (4.26)

whereas if the tag is a B
0
, the sign in front of DA is negative. We see that

these distributions are properly normalized:∫
dt f+(t, DA) +

∫
dt f−(t, DA) = 1 (4.27)

We compute directly

σ−2 = n
∫ ∞

0
dtΓe−Γt D2 sin2 ∆mt

1−D2A2 sin2 ∆mt

= nD2

[
2x2

1 + 4x2
+

24x4

(1 + 4x2)(1 + 16x2)
D2A2 . . .

]
(4.28)

If there are several tagging categories i, each with a fraction εi of the events
and with dilution Di = 1− 2wi, there is a contribution to σ−2 from each:

σ−2 = n
∑
i

εiD
2
i

[
2x2

1 + 4x2
+

24x4

(1 + 4x2)(1 + 16x2)
D2
iA

2 . . .

]
(4.29)
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With the convenient approximation x ≈ 1/
√
2 and dropping all but the

lowest order term, we obtain the rule of thumb:

σ(A) =

√
3

n
∑
i εiD

2
i

(4.30)

Suppose we have two categories but that we don’t know what fraction
of the events will fall into each. We can introduce a second variable, ε,
representing the fraction in the first distribution and maximize the likelihood
with respect to both θ and ε. Here we require unit normalization for the two
distributions separately:∫

dt f1(t, θ) = 1;
∫

dt f1(t, θ) = 1 (4.31)

and take the two functions to be

εf1; (1− ε)f2 (4.32)

Now when we maximize with respect to ε we find

∂

∂ε

 m∑
i=1

ln[εf1(ti, θ)] +
n∑
j=1

ln[(1− ε)f2(tj , θ)]

 = 0 (4.33)

the result is simply
m

ε
=

n

1− ε
(4.34)

In other words, ε is determined simply to reproduce the number of events in
the two categories. The equation for θ will be just as if we hadn’t worried
about ε. Thus, if f1 and f2 have unit normalization, we can forget about ε.

When, as in the case above, there is more than one parameter to be
determined, say θi, i = 1, ..q, the likelihood equations are simply

∂ lnL
∂θi

= 0 (4.35)

For this to be a maximum we need the (negative of the) matrix of second
derivatives

Lij = −∂2 lnL
∂θi∂θj

(4.36)
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to be positive definite. Asymptotically the distribution of output θi for a set
of true values θi has a Gaussian shape in dθi = θi − θi

dP =
√
detL(2π)−q/2e−

1
2
δθiδθjLijdθ1 . . . dθq (4.37)

From this we can find not just the expected variance in θi, 〈δθ2
i 〉 but more

generally 〈δθiδθj〉. A direct computation shows that

〈δθiδθj〉 = [L−1]ij = Mij (4.38)

The inverse of L, the covariance matrix M , is thus the central quantity. In
particular

σi = M
−1/2
ii (4.39)

and the correlation matrix is

ρij =
Mij

σiσj
(4.40)

The elements of L are given asymptotically by

Lij = N
∫

dt
1

f

∂f

∂θi

∂f

∂θj
(4.41)

If, due to fluctuations, the output θi comes out one sigma high, then we
expect θj to come out ρij units of sigma high, as well.

In practice, the CERN workhorse Minuit is generally used to find the
minimum of the negative log-likelihood. Since Minuit is looking for χ2 we
need to convert log-likelihood to this quantity. If it is the (positive) loglikeli-
hood that is computed, probabilities vary as (in the Gaussian approximation)
e∆ lnL while for χ2 we have e−χ

2/2 so the conversion is −2 lnL ∼ χ2. Minuit
produces both the covariance matrix and the correlation matrix as part of
the regular output.
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Chapter 5

Confidence Intervals

5.1 Definition of a Confidence Interval

The definition of a confidence interval was originally proposed by Neyman [4]:

“If the functions θ� and θu possess the property that, whatever
be the possible value ϑ1 of the parameter θ1 and whatever be the
values of the unknown parameters θ2, θ3, . . . , θs, the probability

P{θ� ≤ ϑ1 ≤ θu|ϑ1, θ2, . . . , θs} ≡ α, (5.1)

then we will say that the functions θ� and θu are the lower and
upper confidence limits of θ1, corresponding to the confidence
coefficient α.”

This definition is often misunderstood, so further exposition is in order:
First, to clarify some terminology, what Neyman refers to as a “confidence co-
efficient” will be referred to here as a “confidence level”. The interval (θ�, θu)
is called the confidence interval for θ1. Note that some authors, including
Kendall and Stuart, use 1−α; present usage is intended to be consistent with
the dominant convention in high energy physics. The “functions θ� and θu”
is to be understood as meaning that these quantities are funtions of whatever
random variable is being sampled. Thus, θ� and θu are themselves random
variables.

A simple example should help: Suppose the sampling distribution is a
uniform distribution on (θ, θ + 1):

p(x; θ) =
{
1 x ∈ (θ, θ + 1)
0 Otherwise.

(5.2)
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Suppose further that we have sampled a value X from this distribution, and
wish to obtain an α = 90% confidence interval on the parameter θ. We search
for an interval of the form: θ�(x) = x − a, θu(x) = x − a + b, with b > 0.
Note that other choices are possible; the choice here satisifies the desirable
property of sufficiency, as well as “simplicity” (being linear functions). The
condition on a and b for a confidence interval is:

α = 0.9 = Prob[θ�(x) < θ < θu(x)] (5.3)

= Prob(x− a < θ < x− a+ b) (5.4)

= Prob(x < θ + a)− Prob(x < θ + a− b) (5.5)

=
∫ θ+a
θ+a−b

p(x; θ)dx. (5.6)

The solution to this equation for a and b is not unique – other criteria must
be invoked to decide which choice of confidence interval to use. For example,
we might wish to quote a symmetric interval about the point estimator θ̂ =
X − 1/2. In this case, we give the confidence interval (X − 0.95, X − 0.05).
What we mean when we quote such an interval, is that 90% of the time
we apply this prescription (e.g., in many repetitions of the experiment), the
quoted interval will include θ, and 10% of the time it will exclude θ. That
is, a confidence interval as defined above is to be understood in terms of
frequentist statistics.

To understand the definition better, and how to apply it, consider (fol-
lowing paraphrased from [3]) a distribution p(x; θ) dependent on a single
unknown parameter θ and suppose that there is a random sample of n values
x1, x2, ....xn from the population. For any given confidence level α, we seek
two quantities θ� and θu such that:

P (θ� < θ < θu) = α, (5.7)

for any value of θ. The quantities θ� and θu depend only on α and the sample
values, plus any further criteria needed to arrive at a unique prescription.

For any fixed α, the totality of confidence intervals for different data
samples {x} determines a field within which θ is asserted to lie. This field
is called the confidence belt. We can graphically represent the confidence
belt in the plane of the parameter θ and the data x (condensed into a single
quantity here for illustration, see Fig. 5.1).

The confidence belt for an experiment and significance level α may be
constructed as follows, referring to Fig. 5.1: For any value of θ, say θ0, we
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find values of the random variable x�(θ0) and xu(θ0) such that

α = Prob[x�(θ0) < x < xu(θ0)] (5.8)

=
∫ xu(θ0)

x�(θ0)
p(x; θ0)dx. (5.9)

The interval (x�θ0), xu(θ0)) is graphed as a horizontal line in Fig. 5.1. We
carry out this procedure for all values of θ, and plot the band as shown in
the figure. This will define an area in the x, θ-plane which is the confidence
belt. Note that the construction may require including values of θ which
are considered “unphysical” in order to include the entire sample space. In
the present context of frequency statistics, this should not be regarded as a
difficulty, as no claim is being made concerning possible values of θ.

This belt is now used to define intervals in θ that correspond to vertical
lines in Fig. 5.1. These intervals in θ are the confidence intervals. That is,
once the confidence belt has been constructed, we may use it to read off the
desired confidence interval, for any given sampled value X. We simply go to
the value of X on the horizontal axis, and read off the values of θ in the belt
at that value of X.

Any method which gives confidence intervals that contain the true value
with probability α is said to have a “correct coverage”, which is a frequentist
concept. The intervals as constructed above have the correct coverage by
definition.

5.1.1 One and two sided Confidence Intervals

One sided confidence intervals (“limits”) are often quoted when a measured
value is close to a physical boundary, otherwise we typically quote two sided
(“central”) confidence intervals. For example, a mass or branching fraction
measurement which results in a value not significantly (in the statistical
sense) above zero may be summarized as a limit. In HEP, limits are usually
quoted at the α = 90% confidence level, while central intervals are nearly
always approximately 68% confidence intervals.

There is, however, a slight pitfall here: Often, the decision to quote a
limit or a central interval is based on the result itself. This introduces an
additional dependence in the PDF which is usually not modeled. The result
may acquire a bias. For example, it is more likely that a central interval
(“positive result”) will be reported if an upward fluctuation has occurred.
Thus, first reports of branching fractions tend to be biased high.
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Figure 5.1: Confidence intervals for a single unknown parameters θ, for the
possible values of x.

There are various ways of mitigating this difficulty. One recent proposal
combines a solution to this problem with a means of quoting an interval
which can satisfy some boundary constraint. This is the method of Feldman
and Cousins [5]. The approach consists in building the confidence belt using
the Likehood Ratio ordering principle. This means building the confidence
interval for a particular value of θ adding values of x to the acceptance region
according to the order given by the Likehood Ratio, R(x). The two major
examples of how to build confidence belts with the unified approach and how
these compare to the frequentistic approach are given for Gaussian data close
to the boundary and for Poisson data for small samples in Ref. [5]. Roe and
WoodRoofe worried about the properties of this method in the case of small
statistics, and produced alternative recommendations [6, 7].
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5.2 Confidence Regions in Multidimensional

Cases

The extension of the notion of a Confidence Interval to multidimensional
cases, resulting in “Confidence Regions” is straightforward in principle. How-
ever, some discussion of the common two-dimensional case of an “error el-
lipse” will help to avoid some common confusion.

Figure 5.2 shows an “error ellipse” for a two parameter (θ1, θ2) problem.
The center of the ellipse is given by estimators (θ̂1, θ̂2), and the outline of
the ellipse depends on the moment matrix for these estimators as shown.
Typically, such an ellipse is obtained either as the locus of points where the
χ2 increases by one from its minimum (at least-squares estimators (θ̂1, θ̂2),
or where the ln of the likelihood decreases by 1/2 from its maximum (again,
at (θ̂1, θ̂2), but this time standing for maximum likelihood estimators). The
area enclosed by this ellipse is not, in general, a 68% confidence region.
Instead, if the estimators (θ̂1, θ̂2) are sampled from a normal distribution,
it is the one-dimesional projections of the ellipse which are 68% confidence

intervals. For example, the interval (θ̂1 −
√
(H−1)11, θ̂1 +

√
(H−1)11) is a 68%

confidence interval (in the normal case). In fact, the ellipse corresponds to
approximately a 39% confidence region.

5.3 Bayesian Intervals

Interval estimation in Bayesian statistics, yielding Bayes Intervals, is based
on assumptions concerning the prior distributions (more details can be found
in Section 8.2). The method presented in the Review of Particle Properties
up to the 1997 version [8] to explain how to set upper limits for Poisson
processes in presence of background, is described by the formula:

α = 1− e−(µB+N)Σn=n0
n=0

(µB+N)n

n!

e−µBΣn=n0
n=0

µn
B

n!

. (5.10)

N is the upper limit on the unknown mean µS for the signal with confidence
coefficient ε. µB is the background mean and n0 is the observed number of
events in the Poisson process under investigation.

The formula was derived by Helene [9] using Bayesian statistics with
uniform prior. Such formulas can be investigated in frequency terms, but
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Figure 5.2: The “error ellipse” in (θ1, θ2) parameter space. H−1 is the co-
variance matrix for the estimators (θ̂1, θ̂2).

the frequencies will typically be only approximately given by α. In the case
of discrete distributions such as the Poisson, exact confidence intervals are
difficult (though not impossible) to achieve, and one usually accepts intervals
which may over-cover. In the particular example cited here, the frequency
properties have suffered some confusion in the literature, see references [10],
[11].
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Chapter 6

Testing Hypotheses

Statistical tests are no substitute for common sense. If a fit does not look
right, it probably is not. If a result looks too good to be true, it probably
is. With these caveats, one can use statistics to determine whether data is
consistent with any one hypothesis, and one can use statistics to determine
how well data discriminate between competing hypotheses.

6.1 How Does One Test a Hypothesis?

Is a set of data consistent with a hypothesis? We construct tests based on ex-
pected outcomes. Various statistical measures are calculated and compared
to those we expect. Our tests depend on both the data and the model(s),
and interpreting the results can require some care. We will focus our atten-
tion here on using χ2 and likelihood (L) calculations and their associated
significance levels.

Measuring the chi-square (χ2) for ν degrees of freedom is a very commonly
used test of a hypothesis. In the general case, for a series of measurements
xi where a hypothesis predicts values ξi, we define the difference vector εi =
xi − ξi and use the weight matrix Wij [the inverse of the covariance matrix,
Wij = (M−1)ij], to calculate

χ2 = εiWijεj .

In the special case where the measurements are expected to be uncorrelated,
so that the covariance matrix is diagonal, we denote the expected standard
deviation of xi as σi =

√
Mii. The weight matrix becomes diagonal with
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non-zero elements Wii = 1/σ2
i and

χ2 =
∑ (xi − ξi)

2

σ2
i

.

If the predicted values ξi are independent of the observed values xi, then the
number of degrees of freedom, ν, is the number of terms in the sum. If the
predicted values ξi depend on fit parameters which depend in turn on the
observed values xi, then ν will be reduced.

6.1.1 Testing a Vertexing Hypothesis

A χ2 calculation can be used to discriminate between signal and background
on an event-by-event basis. In this case we accept candidates for which χ2

indicates a high enough probability of belonging to the signal distribution and
reject those for which it indicates a relatively low probability of belonging to
the signal distribution. As an example, we can consider the case where we
want to isolate a sample of K0

S → π−π+ decays. A key feature of the signal is
that both pion tracks emerge from a common vertex. Given the errors on the
measured trajectories, a vertexing algorithm calculates a vertex position, an
error matrix for the derived vertex position which depends on the trajectories
and their error matrices, and from these χ2.

BABAR’s BtaOpFastVtxV0 class calculates a χ2 for one degree of freedom.
If the calculation of the error matrix is correct, the distribution of χ2 for
signal events should be the same as that which would be observed for a
Gaussian distribution of width unity: 68.3% of the events will have χ2 ≤ 1.0;
95.5% will have χ2 ≤ 2.0, etc. One may then choose to accept candidates
with χ2 < 2.5 and reject those with greater values of χ2, for example. One
often converts a χ2 measurement into what is commonly called a probability
measurement assuming that the observed value of χ2 is derived from a normal
distribution. We will define the significance level (α) for the hypothesis that
the two tracks do emerge from a common vertex as

α(χ2
A) ≡ 1−

∫
χ2<χ2

A

P(x) dx =
∫
χ2>χ2

A

P(x) dx

where P(x) is the gaussian probability for a normal distribution in one di-
mension:

P(x) ≡ 1√
2π

e−
1
2
χ2(x) .
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Figure 6.1: χ2 Confidence Level distribu-
tion for vertex fit example.

Figure 6.2: ππ mass distribution for data
in Fig. 6.1. The dark shaded events are
those with α < 0.01.

For signal events, the significance level should be uniformly distributed be-
tween 0 and 1.

Fig. 6.1 shows the significance level distribution of K0
S → π−π+ candi-

dates which have been selected requiring that they point back to a primary
vertex candidate from which they are separated by 0.5 - 6.0 cm, that the
K0
S vertex is inside the beam pipe, and that the candidate mass lies in the

range 450 MeV < m(π−π+) < 550 MeV. In addition, the vertexing signfi-
cance level for each candidate is greater than 0.001, a selection made at the
NTUPLE level. The shape appears to consist of a peak at low values, pre-
sumably due to background, superposed on a relatively uniform distribution,
which we hope is associated with signal. This qualitative understanding is
borne out in Fig. 6.2. Here, the m(π−π+) distribution is shown for all the
candidates, and with that for candidates falling in the first bin of Fig. 6.1
(those with α < 0.01) shaded in the darker color. Several conclusions can be
drawn from these plots:

• the vertex χ2, or the corresponding significance level, discriminates well
between the hypothesis that two tracks emerge from a common point

33



in space and the complementary hypothesis that they do not, at least
for K0

S candidates in this sample.

• the significance level distribution is uniform between 2% and 100%, in-
dicating that the tracks’ error matrices and the algorithm for combining
them are correct.

• in the range above a few percent, the significance level (or the corre-
sponding value of χ2) does not discriminate significantly between signal
and background. The signal is uniformly distributed in this range, and
the background is essentially absent. A candidate with significance
level 95% is only marginally more likely to be signal than one with
significance level 35%.

• in the range below 2%, the significance level (or the corresponding
value of χ2) may or may not discriminate between hypotheses. To
address this question one would need to determine the significance level
distribution for both signal and background in this range.

6.1.2 Fitting a Distribution – a Related Example

We can work with the same set of data and ask more questions. The data
from Fig. 6.2 which remain after requiring signficance level greater than 2%
are shown in Fig. 6.3. We can fit this data as the sum of a linear background
and a Gaussian signal two different ways using HFIT in PAW: the default
algorithm uses a bin-by-bin χ2 minimization and a somewhat more sophis-
ticated algorithm maximizes likelihood. (Note that HFIT uses MINUIT.)
Both fit the data to the functional form

f(x) = p1 + p2x+ p3e
− 1

2

(
(x−p4)

p5

)2
.

The central values and the reported errors for each of the parameters for the
two fits are listed in Table 6.1. In each case, the fit reports χ2 values for 43
points, the number of bins with non=zero entries. What do these numbers
mean? Can they be interpreted correctly using simple statistical arguments?

The reported values of χ2 appear to be reasonable, 32.2 in the first fit
and and 37.2 in the second fit. The number of points used in calculating χ2

is 43 for each fit, and the number of parameters 5, so one might calculate
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Figure 6.3: Data described in the text with
PAW χ2 minimization and binned maxi-
mum likelihood fits superposed. The pa-
rameters for both fits are reported in Table
6.1.

Figure 6.4: Data of Fig. 6.3 with helicity
angle cut. Again, both χ2 minimization
and binned maximum likelihood fits are su-
perposed
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χ2/ν for the two fits to be 0.85 and 0.98 using ν = 38. From a statistical
perspective, what are the possible problems with this approach? First, the χ2

calculations (and the χ2 minization fit) ignore bins with zero entries. Second,
the interpretation of χ2 is well-defined only when the parent distribution is
expected to be Gaussian; when the number of entries in a bin is zero, one,
or two, this cannot be the case. Nonetheless, the fits look good to the eye,
and the values of χ2 probably indicate that the fits describe the distribution
of the data points accurately. This can be tested by generating Monte Carlo
samples of similar size from known distributions of signal and background,
fitting these samples, and observing the results. Do the central values of
the fits reproduce the generated values? Do the fitted values of the error
estimates reproduce the the fluctuations in the central values? Do the χ2

distributions from these fits include the experimentally observed values with
reasonable probability? The central values of the K0

S mass are the same
in the two fits, but the central values for the widths differ by more than 1
σ. And this for precisely the same data. The tests described must therefore
exclude at least one of the the two fitting techniques. The only way to certify
the validity of the fitting process is to test it in detail.

parameter from maximum likelihood fit from χ2 minimization
p1 4.2± 0.5 −0.7± 3.5
p2 −5.2± 0.9 3.3± 7.1
p3 47.8± 3.8 49.5± 4.3
p4 0.4941± 0.0003 0.4941± 0.0003
p5 0.0051± 0.0003 0.0047± 0.0003

Table 6.1: These are the parameters determined by the binned maximum
likelihood fit and the χ2 minimization fit to the data of Fig. 6.3 described in
the text.

Even though both fits give the same central value for the K0
S mass, and

even though the reported values of χ2/ν are good for both fits, and even
though both fits appear to locate the center of the peak correctly, there is
a substantial problem with the fit – it does not provide a correct measure-
ment of the mass of the K0

S. Both fits report the mass to be 494.1 ± 0.3
MeV/c2. The PDG value is 497.67± 0.03 MeV/c2. The difference between
the fitted values and the PDG value is approximately 3.6 ± 0.3 MeV/c2, a
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12 σ difference. What if our hypothesis is wrong? What if the background
is not uniform? Could there be a reflection under the peak which distorts
the apparent shape? To eliminate background from Λ → pπ− reflections and
e+e− pairs, one may require that the magnitude of the cosine of the polar
angle of the pions in the π−π+ center-of-momentum, taken with respect to
the line of flight, be less than 0.70. This produces the cleaner signal seen in
Fig. 6.4. The two fits of this data set find K0

S mass values of 493.5± 0.0003
MeV/c2. Furthermore, if one further divides this data set into three momen-
tum ranges (p < 0.5GeV/c, 0.5GeV/c < p < 0.9GeV/c, and p > 0.9GeV/c)
with roughly equal populations, theK0

S mass values range from 493.5 to 493.7
MeV/c2 with statistical errors of 0.6 - 0.7 MeV/c2. There is no significant
systematic variation which even hints that the central values from the fits
are wrong. The hypothesis that the distribution can be described by a linear
background and a Gaussian signal is consistent with the data; however, the
fitted K0

S mass is not correct within the statistical error. Simple statistical
tests do not test the hypothesis that the derived K0

S mass is correct. [For
the curious - the wrong magnetic field value was used in a tcl file, and there
is no statistical test to find such a mistake.]

6.1.3 Fitting a Data Set with Low Statistics

Calculating χ2 or χ2/ν for data sets with low statistics can be very mis-
leading. The χ2 test is only valid if the underlying sampling distribution is
normal. For example, in the low statistics case, this assumption is incorrect.
To compare data with two (or more) hypotheses, one should calculate the
likelihood ratio(s) for these hypotheses. We will consider here the simplest
case where one does a simple counting experiment and the observations can
be described by Poisson statistics. That is, in any set of observations where
the expected number of events is µ, the probability to observe n is

P(n) = µne−µ

n!

To be concrete, let us consider two hypotheses A and B with measure-
ments ni in bins i = 1, 2, · · ·. The predicted number of entries in each
bin will be denoted µA,i and µB,i for the two hypotheses. Of course, these
predicted values are the mean values for ensembles of of measurements and
will be real numbers; the observed values will be integer numbers of events
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observed. The ratio of the likelihoods will be

LA
LB =

∏
i

(µA,i)
ni e−µA,i

(µB,i)ni e−µB,i

Usually, we consider the difference of the logarithms rather than the ratio
itself, and fold in an additional factor of -2:

−2∆ lnL = −2 (lnLA − lnLB) = −2 ln
(LA
LB
)

.

This makes comparisons with ∆χ2 more intuitive – a lower value of this
difference will correspond to a better hypothesis. In the limit of high statistics
where the Poisson may be approximated with a Gaussian (PH ∝ e−χ

2
H/2), this

difference of log likelihoods corresponds to

−2∆ lnL = −2
[
−1

2
χ2
A +

1

2
χ2
B

]
= χ2

A − χ2
B,

with χ2
B = 0.

A binned maximum likelihood fit is used when the predictions for each
bin are functions of some parameter α or a fixed number of parameters
αi i = 1, 2, · · ·. The most common statistical errors assigned to such pa-
rameters are the variations which correspond to changes in −2∆ lnL of one
unit which correspond to changes in χ2 of one unit. Similarly, 2σ error bars
are assigned to variations which lead to changes of 4 units. However, the
absolute value of the maximum likelihood does not lend itself to simple in-
terpretation regarding the quality of the fit in the same way that χ2/ν does
for fits to high statistics samples. But judging the quality of a fit remains
important.

We wish to determine whether a particular fit is consistent with the data.
We can think of this as a hypothesis test, in which the null hypothesis is
that the data follows the model in the fit, and the alternative hypothesis is
everything else. We may implement this test by forming a likelihood ratio
statistic, in which the numerator likelihood is the maximized likelihood ac-
cording to the fit, and the denominator likelihood is the maximized likelihood
over “all other” possibilities.

In our present case of the Poisson distribution, the best possible fit to
the data will exactly predict the numbers of entries observed in each and
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every bin. One may thus compare the likelihood of the actual fit to this best
possible fit:

Lfit

Lbest
=
∏
i

µni
i e−µi

nni
i e−ni

for which

−2∆ lnL = −2∑
i

[ni lnµi − ni log ni − µi + ni] .

(Note that ni lnni → 0 for ni = 0 as 00 ≡ 1.) If, as often is the case, the fit
constrains the total number of events to the observed value, then this statistic
tests the shape of the distribution. Models with external constraints may
not satisfy this condition, in which case −2∆ lnL will describe the overall
normalization of the model as well as the shape.

Intuitively, we see that the goodness-of-fit is best if the likelihood ratio is
near one, and poorest if near zero. However, to make a quantitative test, the
distribution of this test statistic must be known. To address this question, one
may produce a series of Monte Carlo simulations and study the distribution
of likelihood ratios. What is the probability that in an ensemble of Monte
Carlo simulations one will observe a likelihood ratio better (or worse) than
that observed in the data?

Some care must be taken in how the experiment is conducted and how the
results are reported. One should allow the size of the Monte Carlo sample
to fluctuate statistically, typically this may be done using the observed size
of the sample as the mean value. If trying to describe a combination of
background plus signal, both must be allowed to fluctuate independently. If
the Monte Carlo data sets are then compared with the model based on the
fit, the range of likelihood ratios (or ∆ logL) will account for the statistical
fluctuations in sample size as well as for the shape. This procedure answers
the question of whether the data is consistent with one particular hypothesis.

Similarly, one might ask whether the data is inconsistent with some null
hypothesis. In this case one can create Monte Carlo ensembles of null hypoth-
esis data and ask how often the signal hypothesis gives a better likelihood
than does the null hypothesis. If the model has a free parameter, then one
must also allow this parameter to be determined in fitting the Monte Carlo
data samples. For example, if one is searching for a new state such as a charm
meson or charm baryon resonance whose mass and width are not known a
priori, the appropriate question will be how often one spuriously generates a
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signal with a reasonable mass and width. Assigning a statistical significance
to the result of such a study is precise only if all the parameters to be con-
sidered, and the ranges considered acceptable, are specified before the search
for the signal and the study of spuriously generated signals begins. Sup-
pose, for example, one decides posteriori to consider only possible resonances
with widths less than 40 MeV/c2 rather than those with widths less than 60
MeV/c2 because the possible signal was observed with a width 20±5 MeV/c2.
The evalutation of the number of number of expected spurious signals ac-
cording to the 40 MeV/c2 cut is problematic in such a procedure. This is
because the sampling PDF may also have the possibility that one could have
observed a potential signal with a width of 45 ± 11 MeV/c2, in which case
the cut might have been made differently. This lack of specificity at the
beginning of the analysis will confound the statistical interpretation of the
results.

6.2 Likelihoods in Particle Identification

Likelihood ratios are often used to identify reconstructed tracks as e , µ, π,
K, or p. In this case, we have a discrete set of hypotheses, but the data may
or may not discriminate between them. The goal of using likelihood ratios in
this case is to provide the best discrimination possible between hypotheses
and to quantify the relative consistency of detector response with each of the
hypotheses. The following discussion has been extracted from BABAR Note
422 and modified slightly.

Probability Density Functions

The response of a detector to each particle species is given by a proba-
bility density function (PDF). The PDF, written as P(x; p,H) describes the
probability that a particle of species H = e±, µ±, π+, π−, K+, K−, p, p; γ,
KL, n, n leaves a signature x described by a vector of measurements (dE/dx,
E/p, DIRC angle . . . ). P(x; p,H)dx is the probability for the detector to
respond to a track of momentum p and type H with a measurement in the
range (x, x + dx). As with any PDF, the integral over all possible values
is unity,

∫ P(x; p,H) dx = 1. Note that the momentum is treated as part
of the hypothesis for the PDF and therefore is placed to the right of the
semicolon. Drift chamber momentum measurements are usually of sufficient
precision that they can be treated as a given quantity. In borderline cases
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when the precision is almost sufficient, it is sometimes treated by assuming
that momentum is perfectly measured and smearing the PDF. For example,
a Čerenkov threshold would become a Gaussian convoluted with the actual
turn-on function.

The vector x may describe a single measurement in one detector, several
measurements in one detector, or several measurements in several detectors.
The measurements may be correlated for a single hypothesis. An example
of correlated measurements within a single device is E/p and shower shape
of electrons in the electromagnetic calorimeter. An example of correlated
measurements in separate detectors is the energy deposited by charged pions
in the electromagnetic calorimeter and in the instrumented magnetic flux
return. In many cases of interest the correlations will be reasonably small and
the overall PDF can be determined as a product of the PDFs for individual
detectors. For example, the specific ionization deposited by a charged track
as it traverses the drift chamber has almost no influence on the Čerenkov
angles observed by the DIRC.

The difficult part of PID analysis is determining the PDFs, their corre-
lations (if any) and understanding the uncertainties for these distributions.

Likelihood

Given the relevant PDFs, the likelihood that a track with measurement
vector x is a particle of species H is denoted by L(H ; p, x). The functional
forms of PDFs and the corresponding likelihood functions are the same:

L(H ; p, x) ≡ P(x; p,H) (6.1)

The difference between L(H ; p, x) and P(x; p,H)) is subtle: probability is
a function of the measurable quantities (x) for a fixed hypothesis (p,H);
likelihood is a function of the particle type (H) for a fixed momentum p
and the measured value (x). Therefore, an observed track for which x has
been measured has a likelihood for each particle type. Competing particle
type hypotheses should be compared using the ratio of their likelihoods.
Other variables having a one-to-one mapping onto the likelihood ratio are
equivalent. Two commonly used mappings of the likelihood ratio are the
difference of log-likelihoods and a ‘normalized’ likelihood ratio, sometimes
called ‘likelihood fraction’. For example, to distinguish between the K+ and
π+ hypotheses for a track with measurements xobs, these three quantities
would be written as:

L(K+; pobs, xobs)/L(π+; pobs, xobs) (6.2)
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ln(L(K+; pobs, xobs))− ln(L(π+; pobs, xobs)) (6.3)

L(K+; pobs, xobs)/(L(K+; pobs, xobs) + L(π+; pobs, xobs)) (6.4)

It can be shown rigorously that the likelihood ratio [Eqn. (2)] and its equiv-
alents [Eqns. (3) & (4) & any other 1-to-1 mapping] discriminate between
hypotheses most powerfully. For any particular cut on the likelihood ratio
there exists no other set of cuts or selection procedure which gives a higher
signal efficiency for the same background rejection.

There has been an implicit assumption made so far that there is perfect
knowledge of the PDF describing the detector. In the real world, there are
often tails on distributions due to track confusion, nonlinearities in detector
response, and many other experimental sources which are imperfectly de-
scribed in PDFs. While deviations from the expected distribution can be
determined from control samples of real data and thereby taken into account
correctly, the tails of these distributions are often associated with fake or
badly reconstructed tracks. This is one reason why experimentalists should
include an additional consistency test.

Goodness-of-fit

A statistical test for goodness-of-fit does not try to distinguish between
competing hypotheses;1 it addresses how well the measured quantities accord
with those expected for a particle of type H . The question is usually posed,
“What fraction of genuine tracks of species H look less H-like than does
this track?” This is the prescription for a significance level. For a device
measuring a single quantity and a Gaussian response function, a track is said
to be consistent with hypothesis at the 31.7% (4.55%) significance level if the
measurement falls within 1 (2) σ of the peak value. If the PDF is a univariate
Gaussian,

P(x; p,H) =
1√

2π σ(p,H)
exp

−1

2

(
(x− µ(p,H))

σ(p,H)

)2
 , (6.5)

the significance level (SL) for hypothesis H of a measured track with x = xobs

is defined by

SL(xobs;H) ≡ 1 −
∫ µH+xobs

µH−xobs

P(x;H) dx. (6.6)

1At least, this is how physicists usually think of goodness-of-fit. It is, however, some-
times useful to think even here in the language of alternative hypotheses, in which the
goodness-of-fit test is between the model of interest, and some broader model space. An
example of this was given in Section 6.1.3.
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Notice that the integration interval is defined to have symmetric limits around
the central value. This is an example of a two-sided test. Mathematically,
one may also define a one-sided test where the integration interval ranges
from xobs to +∞ or from −∞ to xobs. However, for a physicst establishing
consistency, it is only sensible to talk about the symmetric, two-sided sig-
nificance levels defined in the last equation when presented with a Gaussian
PDF. This definition is equally sensible for other symmetric PDFs with a
single maximum.

Nature is not always kind enough to provide Gaussian or monotonic PDFs.
For example, asymmetric PDFs are encountered when making specific ioniza-
tion (dE/dx) measurements. Multiple peaks in a PDF might be encountered
when considering the energy deposited by a 1.2 GeV π− in an electromag-
netic calorimeter. Although the π− will typically leave a minimum ionizing
signature, some fraction of the time there will be a charge exchange reaction
(π− + p → nπ0) which deposits most of the π− energy electromagnetically.
A particularly useful generalization of the significance level of an observation
xobs given the hypothesis H is defined to be;

SL(xobs;H) = 1−
∫
P(x;H)>P(xobs;H)

P(x;H) dx (6.7)

Although we define the consistency in terms of an integral over the PDF of
x, note that the range(es) is(are) specified in terms of the PDF, not in terms
of x. This allows a physically meaningful definition. While other definitions
of significance level are possible mathematically, we recommend that BABAR

use only this definition.

Note that because the PDF is normalized to 1, the significance level can be
defined equivalently as

SL(xobs;H) =
∫
P(x;H)<P(xobs;H)

P(x;H) dx (6.8)

All significance levels derived from smooth distributions of the true hypoth-
esis are uniformly distributed between 0 and 1 (as are confidence levels).
This can be used to test the correctness of the underlying PDF using a pure
control sample.
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Using significance levels to remove tracks which are inconsistent with
all hypotheses takes a toll on the efficiency (presumably small), and may
also discriminate between hypotheses. In general, if a cut is made requiring
SL > α, the false negative rate, or type-1 error , is α. This is identical to the
statement that the efficiency of this cut is equal to 1− α. The false positive
rate, or type-2 error , β(H) can depend on the definition of the SL, i.e., on
the design of the test, and is identical to the misidentification probability.
The background fraction in a sample is the sum

∑
βiPAi, where PAi is the

fraction of particle i in the sample.
Consistencies control only the efficiency. Minimizing background, how-

ever, depends on the type of sample. A fixed cut on consistency will produce
very different background rates depending on whether we are looking at τ+τ−

or BB events, if we are just interested in a certain momentum range, if we
cut on multiplicity, or if we consider only tracks from a secondary vertex.
That’s why each analysis will have its own optimum way to do PID.

Mis-using Consistencies

Any procedure for combining measures of consistency such as confidence
levels or significance levels must be arbitrary with an infinite number of
equally valid alternatives. For example, the method proposed in reference
[12] is mathematically equivalent to the following recipe:

• use the inverse of CL = P (χ2|2) to convert each of n probabilities CLi
into a χ2

i

• add them up, i.e. χ2 =
∑n
i=1 χ

2
i

• use CL = P (χ2|2n) to convert χ2 into a new “combined” CL.

The arbitrariness of the method is immediately seen in this recipe, since
equally “sensible” results would be obtained if 2 degrees of freedom were
replaced by k dof for any integer k, and 2n were replaced by kn in the last
step.

Probabilities

In the case (such as particle identification) where the a priori probabilities
of the competing hypotheses are known numbers, PA(H), likelihoods can be
used to calculate the expected purities of given selections. Consider the case
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where 7 pions are produced for each kaon. Then the fraction of kaons in a
sample with measurement vector x is given by:

F(K; x) =
L(K; x) · PA(K)

L(π; x) · PA(π) + L(K; x) · PA(K)
=

L(K; x)

L(π; x) · 7 + L(K; x)
.

(6.9)
This can be considered as a weighted likelihood ratio where the weighting
factors are a priori probabilities. The F(K; x) are also called posteriori prob-
abilities, relative probabilities, or conditional probabilities, and their calcula-
tion according to Eq. 6.9 is an application of Bayes’ theorem 2.20. The purity,
i.e., the fraction of kaons in a sample selected with, say, F(K; x) > 0.9, is
determined by calculating the number of kaons observed in the relevant range
of values of F and normalizing to the total number of tracks observed there,
e.g.,

fraction(FH > 0.9) =

∫ 1
0.9

dN
dF(H;x)

F(H ; x)dF(H ; x)∫ 1
0.9

dN
dF(H;x)

dF(H ; x)
(6.10)

where the integration variable is the value of F(H ; x).

Using likelihoods, consistencies, and probabilities

If PDFs [and a priori probabilities] were perfectly understood, using like-
lihood ratios [and the probabilities calculated above] to discriminate between
hypotheses would suffice. However, the tails of distributions are likely to be
unreliable. Some tracks will have signatures in the detectors that are very
unlikely for any hypothesis. Others will have inconsistent signatures in dif-
ferent detectors, not in accord with any single hypothesis. We do not want
to call something a K rather than π when the observed value of some pa-
rameter is extremely improbable for either hypothesis, even if the likelihood
ratio strongly favors the K hypothesis. Extremely improbable events in-
dicate detector malfunctions and glitches more reliably than they indicate
particle species; they should be excluded. For many purposes, this can be
done conveniently by cutting on the consistency of the selected hypothesis. If
the PDFs are reasonably well understood, this has the additional advantage
that it provides the efficiency of the cut.

Only in the case of a single Gaussian distributed variable do consisten-
cies contain all the information to calculate the corresponding likelihood
functions. There is a two-to-one mapping from the variable to the consis-
tency and a one-to-one mapping from the PDF to the consistency. One can

45



compute probabilities directly from likelihoods only because they are pro-
portional to PDFs. To compare relative likelihoods, one must either retain
the likelihoods or have access to the PDFs used to compute consistencies. If
there is more than one variable involved, or the distribution is non-Gaussian,
even this possibility evaporates; any consistency corresponds to a surface in
the parameters space, and one cannot recover the values of the parameters
or the likelihood, even in principle.

A simple example

Let us consider a toy system that is moderately realistic. Imagine a ring-
imaging Čerenkov detector in which Čerenkov angles θC are measured with
Gaussian resolution σC which we assume to be constant. If all the incident
particles are known to be either kaons or pions of some fixed momentum, then
the distribution of Čerenkov angles θC will consist of the superposition of two
Gaussian distributions, one centered at the central value for kaons, θK , and
one centered at the central value for pions, θπ. Assuming the pion:kaon ratio
is 7:1, and the separation between θK and θπ is 4 σC , the θC distribution will
look like that in Fig. 6.5. The PDF for the pion hypothesis is the normalized
probability function

P(θC ; π) =
1√
2π σC

exp

−1

2

(
(θC − θπ)

σC

)2
 . (6.11)

Similarly, the PDF for the kaon hypothesis is

P(θC ;K) =
1√
2π σC

exp

−1

2

(
(θC − θK)

σC

)2
 . (6.12)

The curves in Fig. 6.5 were produced by multiplying the pion PDF by 7 and
adding it to the kaon PDF (and normalizing the total area under the curve
to unity).

Using the observed Čerenkov angle, it is possible to calculate the relative
probabilities of kaons and of pions at any measured θC :

F(π; θC) =
7 · P(θc; π)

7 · P(θc; π) + 1 · P(θc;K)
. (6.13)
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Figure 6.5: A possible Čerenkov angle distribution constructed assuming 7
times as many pions as kaons at a momentum where the nominal Čerenkov
angles are separated by 4 σ.

Similarly, the kaon purity is

F(K; θC) =
P(θc;K)

7 · P(θc; π) + P(θc;K)
. (6.14)

By construction, F(π; θC)+F(K; θC) = 1. To the extent that we truly know
the a priori probabilities (given the other selection criteria used), and we
have included all possible hypotheses in our analysis, the weighted likelihood
ratios in this problem, F(K; θc) and F(π; θc) give the relative probabilities
that a particle with the observed value of θc will be a kaon or a pion. Imper-
fections in these conditions must be evaluated as part of the systematic error.

The relative probability calculations for this problem are illustrated in
Fig. 6.6. The blue curve shows the expected kaon fraction at each Čerenkov
angle and the red curve shows the expected pion fraction. Several features
of the distributions are worth noting. The pion and kaon PDFs are equal for
θC exactly half way between θπ and θK , but the pion probability is 7/8 while
the kaon probability is 1/8. In effect, the Čerenkov detector has provided
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Figure 6.6: An illustration of the relative probability calculation for the
Čerenkov angle distribution of Fig. 6.5.

no information and the final probability depends only on the a priori prob-
abilities, despite the fact that the significance level for the kaon hypothesis
is 4.55%, a value which is often acceptable.

6.3 Consistency of Correlated Analyses

We are sometimes confronted with the following issue: Suppose that we have
taken a dataset consisting of a set of events. We do an analysis on this
dataset, and obtain a result of interest. We then take the same dataset, and
repeat the analysis, possibly with differences, to again obtain a result on the
same matter of interest. How do we determine whether our two results are
“consistent”?

Let us first attempt to ensure that we understand the question. Con-
sider the limit in which we repeat the identical analysis. In this case, the
result should be identical. If it isn’t, there is an “inconsistency”. Clearly,
“inconsistency” here means “mistake” – the assertion that the analyses are
identical must be incorrect. Now consider the limit in which the first analysis
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includes a random selection of one-half of the events, and the second analysis
includes a selection of precisely the half not used in the first analysis. The
two analyses are otherwise identical. In this case the difference between the
two results should be of purely statistical origin. “Consistency” in this case
is somewhat less trivial to determine, because the results can differ due to
statistical fluctuations. However, a conclusion of “inconsistency” is still an
assertion that a “mistake” was made, up to whatever small probability is
permitted for a large statistical fluctuation.

The key point is that we are trying to evaluate whether any observed
difference in the two analyses is an indication that there is something wrong
with one or both analyses, or whether the difference is consistent with being
due to statistical fluctuations.

6.3.1 How to Evaluate Consistency

Let θ stand for a physical parameter of interest. Let θ̂1 be the estimated
value of θ in the first analysis, and θ̂2 be the estimated value in the second
analysis. The most obvious statistic for evaluating consistency between the
two analyses is ∆θ ≡ θ̂2 − θ̂1. We need the pdf, p(∆θ), for this difference in
order to make a test for consistency. Given this, we simply compute:

α = 1−
∫ ∆θ

−∆θ
p(x)dx.

α is the probability that we would observe a difference greater than the
observed difference, due to statistical fluctuations. If α is bigger than some
number, then we conclude all is well, if not, we worry that something is
wrong.

Actually, we have made a simplifying assumption here: If p(x) depends
on other parameters, including θ itself, then the analysis is complicated by
the need to know these parameters. In the case that θ is a location parameter
for θ̂1 and θ̂2, then there is no dependence of p(x) on θ. As this is often at
least approximately the case, our simplifying assumption is of interest. We’ll
stick to this assumption here, while recognizing that in practice additional
complications may need to be treated.

The question we wish to address for now is: What is p(x)? In the first
limiting case of the introduction, p(x) = δ(x). In the second limiting case,
denote qi(θ̂i; θ), i = 1, 2 as the pdf’s for the results of the two analyses. By
statistical independence, we have p(∆θ) =

∫∞
−∞ q1(x)q2(x + ∆θ) dx. More
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generally, there may be correlation between the samplings, with a joint pdf
q(θ̂1, θ̂2; θ). In this case,

p(∆θ) =
∫ ∞

−∞
q(x, x+∆θ) dx.

6.3.2 Example: Normal Distribution

Suppose that our samplings are from a bivariate normal distribution with
common mean:

q(x1, x2; θ) = A exp
{
−1

2

[
(x1 − θ)2W11 + (x2 − θ)2W22 + 2(x1 − θ)(x2 − θ)W12

]}
,

where W is the inverse of the covariance matrix. If the covariance matrix is
known, then the consistency may be evaluated by a simple χ2 goodness-of-fit
test:

χ2(1 dof) = (x1 − θ̂)2W11 + (x2 − θ̂)2W22 + 2(x1 − θ̂)(x2 − θ̂)W12,

where θ̂ is the value of θ which minimizes the χ2.
On the other hand, the covariance matrix may not be fully known, or

may be a lot of trouble to estimate. In particular, we may not know the
correlation coefficient (ρ). We can still make a test for consistency, though
at a cost of power (probability of correctly deciding that the results are not
the same) and/or at the cost of significance level (probability of incorrectly
deciding that the results are different) due to the uncertainty in ρ, the corre-
lation coefficient. The difference x2 −x1 is distributed according to a normal
distribution with mean zero and variance σ2

x1
+ σ2

x2
− 2ρσx1σx2 . Since ρ is

bounded by ρ ∈ (−1, 1), the variance of x2 − x1 is in the region (σx1 − σx2)
2

to (σx1 + σx2)
2.

If a test of the observed distance using the smaller variance gives consis-
tency, then we may be confident that the results are consistent. If a test of
the observed distance using the larger variance gives inconsistency, then we
conclude that the results are inconsistent. This is as much as we can do in
the absence of knowledge concerning ρ. However, we might at least know
that the correlation is not negative, and thence be able to tighten the test.
In this case, the maximum variance of the difference is σ2

x1
+ σ2

x2
.
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6.3.3 Example: Branching Fraction

Assume that we have a dataset corresponding to N B decays. We wish to
determine the branching fraction θ to a particular final state. We do two
analyses, yielding samples of N1 and N2 events, with efficiencies ε1 and ε2,
respectively. For simplicity, we assume that the uncertainties in N and εi
are negligible, and that there is no background contribution. The mean
number of events expected in each of these analyses is 〈Ni〉 = θεiN . The two
estimates of the branching fraction are given by:

θ̂i =
Ni
Nεi

, i = 1, 2.

If we treat N as fixed, we may model our samplings according to the
multinomial distribution. Let N12 be the number of events which are common
to both samples N1 and N2, with corresponding efficiency ε12. Thus, 〈N12〉 =
θε12N . Note that max(0, ε1+ε2−1) ≤ ε12 ≤ min(ε1, ε2), and that statistically
independent sampling corresponds to ε12 = ε1ε2. Define N̄i ≡ Ni −N12, i.e.,
the number of events that are selected in analysis “i”, but not in the other
analysis. Also let ε̄i be the efficiency for an event to be selected in analysis i
but not in the other analysis. We thus divide our entire sample of N events
into four disjoint sets, with a partitioning given by:

P (N̄1, N̄2, N12; θ) =

N

N̄1!N̄2!N12!(N − N̄1 − N̄2 −N12)!
(ε̄1θ)

N̄1(ε̄2θ)
N̄2(ε̄12θ)

N̄12 [1− (ε1 + ε2 + ε12)θ]
(N−N̄1−N̄2−N12).

We typically may use the Poisson limit:

P (N̄1, N̄2, N12; θ) =
µN̄1

1

N̄1!

µN̄2
2

N̄2!

µN12
12

N12!
e−µ1−µ2−µ12 ,

where
µi ≡ ε̄iθ〈N〉, µ12 ≡ ε12θ〈N〉.

Our difference test statistic is

∆θ =
1

N

(
N2

ε2
− N1

ε1

)
=

1

N

[
N̄2

ε2
− N̄1

ε1
+N12

(
1

ε1
− 1

ε2

)]
.

Note that εi = ε̄i+ε12. The distribution of this test statistic may be evaluated
according to the above probability distribution with Monte Carlo methods.
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The observed difference may then be compared with the predicted distribu-
tion in order to evaluate consistency. As in the Gaussian case, it is possible
that the “correlation” parameter, ε12, may not be known, and a similar treat-
ment to that for the Gaussian example will be necessary. In many cases, it
will probably be reasonable to assume that ε1ε2 < ε12 < min(ε1, ε2), i.e., that
the selection is not anti-correlated.

It may be remarked that the test here checks for consistency between the
two results. It doesn’t check for other possible problems, such as whether we
have consistency with the expected overlap. Other tests could be devised to
address such questions.

It is possible that, in the case where we don’t know the correlation pa-
rameter, we can estimate it from other data available to us. That is, we
may have sets of signal-like events and background-like events from our two
analyses which can be used to estimate the relative values of ε̄1, ε̄2, and ε12.
These can then be used to evaluate whether the observed signal numbers
show consistent behavior.

6.3.4 Example: Two Analyses on the Same Events

A case that causes some confusion is when the event selection is identical,
but two analyses are performed on the selected sample. Because different
information may be used in the two analyses, some variation in the results
may be expected. As the measured information is in the form of random
variables, this is still a problem amenable to statistical analysis.[17] The
question being asked is still whether the observed difference is consistent with
statistical fluctuations, versus the possibility that there is an inconsistency
(mistake).

A concrete illustration is the following situation: Suppose that we have a
set of events consisting of mass measurements, {m1, . . . , mn}, of some reso-
nance. Let the resonance mass be denoted θ. Assume for simplicity that the
measurements are all made with Gaussian resolution functions, with possi-
bly different widths, but all unbiased, and assume that the natural resonance
width is negligible. We may form an estimate of the resonance mass by taking
the sample mean of all the measurements:

θ̂1 =
1

n

n∑
i=1

mi.

This is an unbiased estimator for θ, since 〈θ̂1〉 = θ.
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Now suppose that we actually have, for each measurement, the resolution,
σi, with which it is made. This additional information does not invalidate our
estimator θ̂1, but we can incorporate this information into another estimator:

θ̂2 =
n∑
i=1

mi

σ2
i

/
n∑
i=1

1

σ2
i

.

Again, we have an unbiased estimator for θ, since 〈θ̂2〉 = θ.
Both θ̂1 and θ̂2 are normally distributed, with moment matrix:

M =

( 1
n2

∑n
i=1 σ

2
i 1/

∑n
i=1

1
σ2

i

1/
∑n
i=1

1
σ2

i
1/
∑n
i=1

1
σ2

i

)
.

Note that the form of this matrix is indicative of the fact that all of the
information in the first analysis is used in the second analysis. According to
our above analysis of the bivariate normal, the difference between the two
estimators is distributed according to the normal distribution with standard
deviation:

σ∆θ =

√√√√ 1

n2

n∑
i=1

σ2
i −

1∑n
i=1

1
σ2

i

.

A simple χ2 test can thus be used for checking consistency between the two
results.

6.3.5 Dealing with Systematic Uncertainties

Typically our results have “systematic” uncertainties in addition to the sta-
tistical uncertainties we have so far been dealing with. In some cases, the
systematic effect will be identical for both results. For example, both results
might be based on the same estimate of the integrated luminosity. In this
situation, there is no additional uncertainty in ∆θ from this source.

On the other hand, it is possible that a systematic effect may be different
in the two analyses. For example, the efficiency estimates in the two analyses
may be made differently. This could lead to a “systematic” uncertainty in
∆θ affecting our criteria for consistency. If possible, any common systematic
should be separated out, leaving only the “independent” systematics, call
them sx1 and sx2. Then it is reasonable to assign a systematic uncertainty

of s∆θ =
√
s2
x1
+ s2

x2
to the difference, similarly to the result for uncorrelated

statistical uncertainties. If it is too difficult to separate out the common
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systematics, then the best one can do is embark on a treatment similar to
the discussion for the unknown correlation in the statistical errors.

Finally, a comment on what to do with the observed difference in the
results of the two analyses. In general, the existence of two such results is a
“fortuitous” circumstance – doing the two analyses is not a part of the ex-
periment design. In particular, there is no plan that the purpose of doing the
two analyses is in order to evaluate a “systematic uncertainty”. The system-
atic uncertainties should be evaluated as appropriate in each analysis. The
existence of more than one analysis may be used as a “check” for mistakes,
but no new systematic uncertainty should be assigned to cover the difference
between the two analyses.
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Chapter 7

Systematic Errors

7.1 Introduction

The term ‘systematic error’ is generally taken as signifying any error not due
to statistical fluctuations in data (although see Section 7.5.2.) This clearly
covers a very large range of possibilities. Some attempt is made to categorise
them here, to explain the different types that need different handling. In
order to do this we have included many examples and illustrations. Some
are invented but where we can we have used real instances from particle
physics, especially from the types of analysis being done with BABAR.

7.1.1 Errors and Mistakes

A ‘systematic error’ is an error, as opposed to a mistake. We regard the ex-
pressions ‘systematic error’ and ‘systematic uncertainty’ as equivalent, in the
same way that ‘statistical error’ and ‘statistical uncertainty’ are equivalent.
One could argue that the term ‘error’ is ambiguous and should be dropped
in favour of the unambiguous alternatives ‘deviation’ and ‘uncertainty’, as
appropriate, but this is unrealistic.

We therefore disagree with an otherwise reputable statistics textbook[23]
when it presents, as a paradigm of ‘systematic error’, measurements made
with a steel rule by an experimenter who forgets to allow for thermal ex-
pansion. This is a mistake: a systematic deviation. When the experimenter
realises that the measurements are faulty (either because they remember
about thermal expansion, or because they find inconsistencies) then they ap-
ply a systematic correction, and a systematic error to cover the uncertainty
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in that correction.
So if results are suspect (because they disagree with the Standard Model,

or the World Average, or amongst themselves...) then do not blame an ‘un-
known systematic error’ but an ‘unknown systematic effect’. This is further
considered in section 7.2.3. (Speakers often cover themselves in such cases
by talking about an ‘unknown systematic’, supplying the adjective but leav-
ing the noun to be filled in by the audience. If you do this, you should at
least be very clear in your own mind which you mean.)

7.1.2 The philosophical status of systematic errors

In many cases (not all) a systematic error is not a good frequentist concept.
Usually there are exact values, we just don’t know them.

Example 7.1:Vcb from the b lifetime
The lifetime of B hadrons clearly depends on the magnitude of the CKM
element Vcb. It also depends on many other things, for example the mass of
the b quark. This uncertainty can be folded into the value to give an estimate
and error for the matrix element. However the b quark mass has no ‘error’ in
the frequentist sense – all b quarks have the same mass, we just don’t know
exactly what it is.

In such an analysis even the most virulent frequentist 1 will bite the bullet
and go Bayesian [18]. This is done with reservations, and the proviso that
the extent of the uncertainty in the quantity be small, or at least make a
small difference to the final result, so that changes to the prior distribution
do not affect the result.

7.1.3 Combination of Systematic Errors

When you take several measurements, then any systematic effect shifts them
all in the same way. Averaging has no benefit. This is perhaps responsible
for the widespread and erroneous belief that “you can’t add systematics in
quadrature”. You can add systematic errors using the standard undergrad-
uate formula for the combination of errors, in exactly the same way as you
add statistical errors, remembering to include the correlation term

1Probably a reference to some of the authors.
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Cov(xi, xj) =
∑
k

∑
�

(
∂xi
∂yk

)(
∂xj
∂y�

)
Cov(yk, y�) (7.1)

i.e. you use Equation 2.14 but you cannot simplify it to 2.16.
Another version of this myth says that that you can’t add systematics

because they’re not Gaussian. In fact there is nothing in the combination of
errors formula that requires a Gaussian distribution – variances add for any
convolution – and indeed the Central Limit Theorem ensures that the final
distribution is likely to be Gaussian, whatever the ingredients. (A Gaussian
distribution is only necessary when you match deviations to probabilities:
68% within 1 σ and so on.) Another standard text [14] misleadingly recom-
mends that systematic errors be added linearly, on the grounds that if you
know the values are somewhere in the two ranges, you know the final value is
within the sum of the two ranges: this is true for tolerances (as the engineers
use) but inappropriate for errors as understood and used in physics.

Where the combination of errors formula does come unstuck, for statis-
tical and systematic errors, is if the errors are large, in the sense that the
first term in the Taylor expansion is not enough. With θ = 1.1 it is valid to
say σtanθ = σθ/ cos

2 θ for σθ = 0.05 but not for σθ = 0.50! Such examples do
occur, and are consided in section 7.5.3.

7.2 Finding systematic errors

Systematic errors can be divided into 3 categories depending on the tech-
niques needed to find and evaluate them.

7.2.1 Straightforward Errors

Type 1 (‘good’) errors arise from clear causes, and can be evaluated. Calibra-
tion errors are a typical example: various calibration constants are applied
to the data (affecting everything in the same way), and the errors on those
constants are determined as part of the calibration procedure.
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Example 7.2:Luminosity errors
In calculating the luminosity in any period, there is a statistical error from
fluctuations in the numbers of small-angle Bhabhas measured by the luminos-
ity monitor, and, as the cross section varies rapidly with angle, a systematic
error from ignorance of the exact (effective) position of the luminosity moni-
tor, which can be evaluated from survey errors and Monte Carlo simulation.

Example 7.3:Background distributions
In studying rare B decays [15] systematic errors arise from the accuracy with
which the signal and background probability functions are known. We obtain
these functions, such as the shape of the ∆E or resonance mass distributions,
from auxiliary measurments taken on simulated or real data.

Their evaluation is discussed in section 7.4.

7.2.2 Uncertain errors

Type 2 (‘bad’) errors arise from clear causes but can not be evaluated.
In such cases there is no unambiguously correct procedure to determine

the error. It is important to state clearly what values have been used, so
they can be revised in the light of later developments if necessary, but one
must acknowledge the imperfect nature of the result. This is not as bad as
it may sound, because such errors are often a small component of the total
systematic error, especially when added in quadrature. Don’t sweat the small
stuff.

Theory Errors

‘Theory errors’ are a typical example. A theoretical prediction is not precise:
its accuracy is limited by simplifications in the model used, or in the number
of terms taken in an expansion, or other mathematical approximations used.

Example 7.4:Luminosity errors again
Luminosity measurements also have a systematic error due to the accuracy
of the theory: Bhabha scattering has only been computed to a certain order
of diagram.

One tactic here is to ask some appropriate experts how accurate they
think a calculation is. A consensus may emerge – or it may not. Theorists
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can be touchy: someone who has spent 6 months performing a complicated
calculation within the framework of a particular model does not respond well
to questions about the validity of the model. If they do produce a value it
can be very conservative – a tolerance rather than a standard deviation.

Asking several theorists for an assessment of the accuracy of a prediction
is an interesting and enlightening experience, but probably won’t help you
get the error estimate you wanted.

Another method is to take several typical but different values or models
and compare the results. The standard deviation of the results then gives
you an estimate of the error.

Unfortunately circumstances may restrict you to a few results (even two).

Two theories

If you have two cases which you know are extreme (e.g. no mixing or full
mixing) with the true value anywhere between them, then it is allowable to
take the mean of the two results as the central value, and the difference over√
12 as the error.

Example 7.5:A 24 hour window
If a daily check shows that a channel was working yesterday but was dead
at the same time today, then (in the absence of other information) the best
estimate for the dead time is 12± 6.9 hours.

This is a popular technique as
√
12 is quite a large number, but it should

not be abused. Its validity is restricted to cases where you really have two
extreme models (not just any two models) and where the truth can plausibly
be said to lie anywhere in between. If the two models are extreme, and with
equal (subjective) probability either one or the other is true, then the error
would be the difference over 2.

If you believe them to be ‘typical’, i.e. random samples from a space
of models, then you should use the difference divided by

√
2, i.e. the rms

difference from the mean is corrected for bias by the usual
√

N
N−1

factor.
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Example 7.6:ρ polarisation
In the measurement of the branching ratio B → J/ψρ [24] the acceptance
depends on the polarisation with which the ρ is produced. This could be
completely transverse or completely longitudinal or anything in between.
The efficiency used is the average of those for transverse and longitudinal
polarisation, and the error the difference divided by

√
12

Example 7.7:The mass of the (1700)
ALEPH [21] measure the mass of the ρ′ in τ± → π±π0ν decay. Using the
Kühn and Santamaria model gives a mass of 1363 ± 15 MeV. Using the
Gounaris and Sakurai model gives 1400± 16. They quote a combined result
of 1380± 24.

We do not recommend this, preferring to quote the two values separately.
[20].

7.2.3 Errors from unknown causes: Checks

Type 3 (‘ugly’) errors arise from sources that have been overlooked. Because
the causes are unknown the errors are unquantifiable. However the existence
of such causes may reveal itself through consistency checks. These often
take the form of changing something which should in principle not affect
the result, and also of evaluating a similar result where the value is known.
Satisfactory checks will give confidence in the result, both for the authors
and others.

Example 7.8:Expanding steel ruler
Measurement was made with a steel rule, without realising that the tem-
perature is different from that at which it was calibrated. The experimenter
checks that measurements in the morning and afternoon are consistent. They
find a difference – and realise that mornings are cool and afternoons are
warm.

Some checks are specific to an analysis, for example measuring the CP
a symmetries in channels where it must be zero. Others are standard: vary
histogram binning, fit backgrounds with different parametrisations, and use
Maximum Likelihood fits instead of counting techniques (or vice versa).

The purpose of these checks is not to find systematic errors. It is to
find mistakes, (or, to look at the other side of the coin, to give confidence
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in the absence of mistakes). Traditional practice has confused them with
the estimation of known systematics, perhaps because the methods used are
similar: run an analysis, change something, run it again and see how much
the result shifts. It is important to distinguish between cases where one
legitimately expects the change to affect the result (‘educated checks’) and
cases where the result should be stable against the change (‘blind checks’).

It would obviously not be correct to adjust the measurement and its
error for every consistency check that has been made, certainly if the in-
consistencies are within the statistical uncertainties of the checks. Adding
many systematic errors of this type will increase the total systematic error
of the measurement unjustifiably, and penalise the virtuous, especially since
many consistency checks are statistically limited. One should correct for
(untraceable) mistakes, but not for statistical fluctuations.

Illustrative and totally fictitious example

To elaborate, and highlight the pitfalls of the common (ab)usage, consider
the following example:

Suppose BaBar measures an asymmetry of 0.50±0.02 in some channel. As
a sensible check, it does the same analysis for a channel for which the result
must be zero. Unfortunately it comes out (despite thorough re-checking) as
0.10± 0.01. Clearly there is a ‘mistake’ at work.

It is decided (for political reasons) not to suppress this measurement; it
has to be used.

This involves TWO stages
First the value is adjusted. By how much depends on the judgement of

the experts and is not a question for statistics.

• It could be that these channels are so similar that a bias of 0.1 in one
means there is a bias of 0.1 in the other, and the measured asymmetry
is shifted to 0.40.

• It could be that a mistake of +0.1 in one channel could manifest itself
as -0.1 in another channel, and we leave the value at 0.50.

• There could be some sort of compromise, perhaps at 0.45. The bias is
negative, but 0.1 is judged excessive.

Secondly the error is adjusted. This is linked to the value adjustement.
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• If we believe the mistake is nothing but a bias measurement, our answer
is 0.40 ± 0.02 ± 0.01 (though one would probably inflate that 0.01 a
bit!)

• If the anomaly of 0.1 is taken as an estimate of the magnitude of a
mistake one would probably ascribe an error of that value, giving 0.50±
0.02±0.10. (Even though the correction in this case is 0, it is still there)

• If an adjustment of half the anomaly was made as a compromise, that
would probably deserve a largish error, perhaps equal to the shift, giv-
ing 0.45± 0.02± 0.05.

The 0.10 error in the second instance happens to be equal to the original
‘safety check’ measurement value of 0.10, but as you can see in this drawn-out
example they are NOT inevitably the same. They are different quantities:
one is the mistake (or, at least, the evidence for it). The other is the (system-
atic) error on the correction applied to compensate for that mistake. With
another method of correction they can be different. This is what is glossed
over in the usual ‘Make lots of checks and fold the discrepancies into the
systematic errors’ graduate thesis approach.

Evaluating the result of a check

When a check is done the result is examined for a possible effect. In the above
artifical example there is a 10σ effect and so no question about whether the
‘mistake’ really existed. In real life we have effects at the 1 to 3 σ level and
have to decide what to do.

At what point action is triggered depends not only on the significance
of the effect but also on the number of checks being done (if you work hard
and do 20 checks, one should give a 2σ deviation.) It also depends on the a
priori likelihood of an effect being present. If one has good argument that
a potential bias may lurk behind a well defined effect, and even if the check
leads to a small apparent bias, but with a large error, it is still sound to
correct for the small bias (to be nice) and to add a large(r) uncertainty.
For blind checks, if nothing significant is seen, you should just forget it: in
that case ‘significant’ could mean a 3 sigmas effect. For educated checks,
you correct for the bias whatever the statistical precision is, and increase
accordingly the systematics.
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If the analysis passes a blind check, then all you do is tick the box and
move on. (You may wish to add a line to the publication “We have checked
that the result is not sensitive to...”) If it fails then the problem has got to
be studied. Possible results are (in a rough order of preference)

• A bug in the check is found and fixed. The analysis now passes the
test.

• A bug in the analysis is found and fixed. The result shifts. The analysis
now passes the test.

• Mature consideration convinces you that the result could depend on
this change after all. This now becomes an educated check

• You convince yourself that this is a statistical fluctuation and declare
that the blind check was passed after all

• The result is not published

• An error is ascribed to ‘unknown effects’ is guessed at and incorporated
in the systematic error.

The significance of a check

A check which consists of a different analysis of the data (for example, using
different histogram bins) involves comparing the two results. The difference
between these results will not be zero (as the techniques are different, after
all) but should be ‘small’. Here ‘small’ cannot be defined with respect to
the statistical error, as the results use the same data. The deviation can
be compared with the difference in quadrature between the errors from the
two methods, which gives reasonably accurately the expected error on the
deviation.

Actually the error on the difference is given by the limits:√
σ2

1 − σ2
0 −
√
σ2

2 − σ2
0 ≤ σdiff ≤

√
σ2

1 − σ2
0 +
√
σ2

2 − σ2
0 (7.2)

Where σ1 is the larger of the two errors, σ2 is the smaller, and σ0 is the
Minimum Variance Bound. If the better technique saturates the Minimum
Variance Bound then the range decreases to nothing and σ2

diff = σ2
1 − σ2

2
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as given. Care and precision are needed in this check, and it may be nec-
essary/useful to give errors to more significant figures than appears strictly
necessary. If the better measurement does not saturate the MVB then the
range widens quite rapidly and this method may not be useful. Simulation
with a toy Monte Carlo will work in such cases, though it is a significant
amount of work.

Full simulation: a special check and a special case

A classic example of a ‘consistency check’ is the running of the whole analysis
chain on Monte Carlo data to ensure that the values input for the parameter
in question are returned as output. This should really be done for several
values, covering the area of interest. Usually this is a pure consistency check
(eg for sin 2β measurements) but there are some counterexamples when this is
used as input; for example in the measurement of the W mass from hadronic
decays, there are significant distortions to the value due to kinematic effects
such as the assignment of particles to jets; the Monte Carlo has to be used to
give this correction (the uncertainty on the correction is a systematic error).

If, as is generally the case, the analysis method is believed to be unbiassed
then even if the result is of moderate significance(0-2 σ) there is a practice
of correcting the final result for this bias and increasing the systematic error
accordingly (by the Monte Carlo statistical error). This is an insurance to
cover the possibility of an unknown mistake in a (often complex) measure-
ment technique. This practice has the implicit assumption that the cause of
the bias in the simulation is also present in data. It does not assume that
there are no additional biases in data that are not present in the simulation.
This ‘consistency check’ is special, because it tests the whole measurement
technique and not just a small part of it. The corresponding error does nor-
mally not contribute much to the total error since usually the statistics of
the simulation is significantly larger than the signal sample in data.

This is a blind check (of a special kind admittedly) so if it does not show
any significant effect (3σ, say) consistency with the logic of the preceding
section says says it may be dropped. However, consistency is “the hobgoblin
of tiny minds ”, as Emerson puts it, to take it into account is like taking
a kind of insurance against mistakes: it is costly, but far less than being
caught without insurance ! However this special status should be granted
only to a simulation of the full analysis, including background effects. Other
partial simulations may be more practical (due to eg lack of large background
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MC samples) but are on a level with the other blind checks. We also hope
this advice will encourage people to do their full check with large MC data
samples so the uncertainty that gets added is small.

Example 7.9:First sin 2β
In our first sin 2β publication an analysis is done on simulated data and shows
that the value inserted into the Monte Carlo is then produced by the analysis
and there is not evidence for bias. Nevertheless we assign a contribution of
0.014 to the systematic error.

7.3 Correlations

Correlations are especially significant in the handling of systematic errors for
two reasons:

• Systematic errors affect all data in the same way, so the effects are
correlated.

• The errors themselves are often correlated.

Example 7.10:Double Gaussian
A typical example of this is the fitting of a resolution by a double Gaussian

P (x) =
1− α√
2πσc

e−x
2/2σ2

c +
α√
2πσt

e−x
2/2σ2

t (7.3)

where the 3 parameters: the core resolution, the tail resolution, and the frac-
tion of the peak which is tail, are all strongly correlated. If these correlations
are not included, the errors will be overestimated.

The correlation matrix between two independent variables is the unit
matrix , between two completely correlated variables it is all ones. The
covariance matrices have the same structure with appropriate values of σ.

ρ =
(
1 0
0 1

)
V =
(
σ2

1 0
0 σ2

2

)
independent (7.4)

ρ =
(
1 1
1 1

)
V =
(

σ2
1 σ1σ2

σ1σ2 σ2
2

)
completely correlated (7.5)
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Example 7.11:Average leptons
A leptonic efficiency is an average over efficiencies for muons and electrons.
Two efficiencies ηµ and ηe are obtained from independent MC samples, with
errors σµ and σe. They are then multipled by a factor ηT ±σT to account for
tracking efficiency losses not in the MC.

E =
Eµ + Ee

2
=

ηµηT + ηeηT
2

(7.6)

The error can be evaluated as

σ2
E = (

ηT
2

,
ηT
2

,
ηµ + ηe

2
)

σ2
µ 0 0
0 σ2

e 0
0 0 σ2

T




ηT

2
ηT

2
ηµ+ηe

2


or equivalently as

σ2
E = (

ηT
2

,
ηT
2

,
ηµ
2
,
ηe
2
)


σ2
µ 0 0 0
0 σ2

e 0 0
0 0 σ2

T σ2
T

0 0 σ2
T σ2

T



ηT

2
ηT

2
ηµ

2
ηe

2



An analysis can often be broken down into quantities which are either
completely independent or completely correlated, with matrices accordingly
diagonal or uniform, correlations zero or 1. When they are combined, then
the partial corelation structure emerges.
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Example 7.12:Using systematic errors in fits
Consider fit through two sets of x, y points. The values were measured with
two different sets of apparatus (or the same apparatus under two different
conditions) so all y measurements have individual error σ, however the first
set of points share a common systematic error S. So do the second set of
points

Cov(yi, yj) = σ2 + S2 if i = j (7.7)

= S2 if i and j are in the same set (7.8)

= 0 otherwise (7.9)

This matrix is inverted and used in the χ2 minimisation

7.4 Incorporating Errors

Errors can also be divided into:

• Those that can be incorporated algebraically (e.g. selection efficiency
used to get from a measured branching ratio to the true value.)

• Those that are incorporated in the fit, though not in any simple alge-
braic form.

• Those that are incorporated in the fit and selection.

For these latter two the systematic error has to be found by changing
value used in the fit (and, if necessary, selection) and ascertaining the change
in the result. Usually one changes the value by ±1σ and reads off the result:
if the deviation to either side is the same this is a simple error, otherwise it
can be quoted as an asymmetric error – see section 7.5.1. However there may
be cases where one changes a different amount and then scales (e.g. change
by ±5σ and then take 0.2 times the shift, if the effect is small and susceptible
to rounding errors) and/or take several values and observe the shape of the
effect.
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Example 7.13:Sin2β
For example, in the sin 2β meansurement, the Beam Spot Size and SVT
alignment affect both the selection and the fitting. The B lifetime and the
mass difference ∆md affect the fitting but not the selection.

7.4.1 Errors on the errors

Suppose you want to evaluate the systematic uncertainty in a result R due to
the uncertainty σp in some parameter p. You evaluate

1
2
|R(p+σp)−R(p−σp)|,

having satisfied yourseklf that the deviations are reasonbly symmetric.
However the results R(p) etc have themselves got statistical errors σR.

How should these be incorporated.
You need to establish carefully what you’re doing. If these 3 analyses are

all performed on the same data, and σR comes from the statistical errors on
this data, then these errors are totally (or strongly correlated) and do not
need to be considered. Changing the value of a branching ratio in an analysis
is an evaluation that fits this desctiprion.

On the other hand if the σR errors are due to finite Monte Carlo statistics
on separate Monte Carlo ssamples, then this does represent a real uncertainty.

In principle this situation should never be important. If the MC statistics
errors are not small compared to the data statistics errors then you need
more Monte Carlo. (Or you might use intelligent reweighting rather than
regenerating).

If this is not the case then as a final resort the uncertainty should be
folded in in quadrature.

σ2
R:p =

(
1

2
(R(p+ σp)− R(p− σp))

)2

+ σ2
R

7.5 Quoting Errors

It is a general practice in Particle Physics (though not outside) to quote
statistical and systematic errors separately, and there are excellent reasons
for this.

In some cases the analysis may usefully give a total error by adding the
two in quadrature, and there is no reason not to do this if it is done in
addition to the standard format (which should always be the prominently
presented result.)
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Separate systematic errors

In some cases it may be helpful to a present contributions from different
sources of systematic error separately, for example where there is a large effect
from an unknown intermediate branching ratio which will probably soon be
known more accurately, or where this result is expected to be combined
with other results from this experiment or others, with correlated errors..
Such presentation will enable the error to be readily recomputed when the
better numbers are available. However this should not be done as a general
procedure, only with good reason.

7.5.1 Asymmetric errors

It often does happen that the error obtained from the likelihood or from
changing an analysis parameter is not symmetric (Of course statistical errors
may also be asymmetric, especially for small statistics.)

Example 7.14:Asymmetric Error
Changing the value of parameter a by +σa changes the result from 10.0 to
10.5; Changing it by −σa changes it to 9.8. The result is quoted as 10.0

+0.5
−0.2.

When combining results with asymmetric errors add each side seperately
in quadrature. There is no real theoretical justification for this - what you
should do depends on the shape of the likelihood curves and all you really
know about them is that they’re not Gaussian - but there is no better alter-
native and it is a convention.

Example 7.15:Combining results
if a = 10.0 ± 1.0+0.3

−0.5 and b = 20.0 ± 1.0+0.4
−1.2 then c = a + b has the value

30.0± 1.4+0.5
−1.3

The sense of the shift should be reflected in the error quoted. This is
needed in determining errors if this result is later combined with others where
this systematic error is correlated between them .

Example 7.16:Another Asymmetric Error
Changing the value of parameter a by +σa changes the result from 10.0 to
9.8; Changing it by −σa changes it to 10.5. The result is quoted as 10.0

−0.2
+0.5.
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7.5.2 Systematics entangled in the data

While many systematic errors are established independently of the data,
in some cases the data sample itself contains useful information about the
systematic effect – and in extreme cases this may be the only source of
information. In this last case the systematic error behaves essentially like a
statistical error, the difference being that it is of no interest.

There are (at least) 3 ways used by practising particle physicists to define
what is meant by a ‘systematic error’

A An error not due to statistical fluctuations in the data.

B An error not due to statistical fluctuations in the data sample being
studied

C An error not associated with statistical fluctuations in the measurement
data for the parameter of interest in the data sample being studied.

Example 7.17:Mixed statistical and systematic errors
A sample of 100 events in a peak in a mass window comprises signal on top
of an estimated 30± 6 background events.

If the background estimate is external (e.g. from a previous experiment,
or from Monte Carlo) it can certainly be termed ‘systematic’ as it satisfies
all 3 definitions. The overall estimate of the signal is just 70± 10± 6

If the background is estimated by interpolating the level in the sidebands
in this experiment, this satisfies B and C but not A. Some physicists would
call it a systematic error and some would call it statistical. Our view is
that, although this is not our recommendation, provided it is clear what is
happening, there is no harm in calling this a ‘systematic’ error. The overall
estimate of the signal is still validly given by 70± 10± 6.

If the background and signal are estimated together using the data in the
mass window (and some other discriminator variable) this satisfies (C) but
not the other two. Analogy with the previous example would suggest that
it can also be called a systematic error. However the signal estimate can no
longer be written as 70± 10± 6.

In a case like this, a combined error from a combined fit, the division
into ‘statistical’ and ‘systematic’ is not particularly meaningful. We should
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recommend that in such cases the quoted result should be the combined
error; if desired a form of words should be added, e.g.,

We observe 70 ± 15.9 events; if the background were known exactly the
error would reduce to 10.0.

Example 7.18:Combined systematics and statistical
People have asked where the 15.9 came from. The actual value depends,
of course, on the analysis. Suppose that as well as the mass we have some
tagging variable x. A cut has been optimised on x and it turns out that 67.4%
of signal events lie above the cut, and 32.6% below, while for background
events the split is (by a coincidence) exactly the other way, 32.6:67.4.

Suppose further we actually observe 57 events above the cut and 43 below.
Arithmetic then gives the signal and background numbers as

57 = 70 ∗ 0.674 + 30 ∗ 0.326 43 = 70 ∗ .326 + 30 ∗ .674

The result is actually obtained from

NS =
57 ∗ 0.674− 43 ∗ 0.326

0.6742 − 0.3262

These fractions are obtained from Monte Carlo and hence (!) known with
complete certainty. The 57 and 43 are independent Poisson variables, so the
total error on NS is given by

σ2
S =

57 ∗ 0.6742 + 43 ∗ 0.3262

(0.6742 − 0.3262)2
= 15.92

For example, in the sin 2β measurement, the Beam Spot Size ,SVT align-
ment, B lifetime and mass difference ∆md are known from other parts of
the data. The CP background and the tag misidentification probabilities are
determined from the fit (to the combined CP+Mixing dataset) but are of no
interest, and the ∆t resolution is partly determined from other sources and
partly determined from the fit to this data set.

7.5.3 Systematic Errors and Likelihoods

In many interesting and relevant cases with low statistics, a result cannot be
expressed as a value with an error, but the full information is only expressible
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as a likelihood function L. The maximum likelihood estimator may well be
chosen as a quoted value, but the one σ limits where the likelihood falls by 1

2

are asymmetric, and the two σ limits where L falls by 2 are not twice the one
σ limit. In such cases the full likelihood function is the only way to combine
results from different experiments.

The location of the maximum of the likelihood, and the exploring of the
function around it, is done numerically, for example with MINUIT[25].

When dealing with errors on more than one quantity, with the distribution
given by a multidimensional Gaussian, with non-zero correlation, the error on
a single quantity is found by projecting the distribution onto the appropriate
axis – not, as might be thought at first sight, taking a slice through it (see
section 5.2). The same is true for non Gaussian distributions: to get the
likelihood as a function of one patrameter one has to integrate out all tghe
othersi, not take a particular set of values.. Suppose that the probability of
a result x is a function of the parameter(s) of interest a and parameter(s) of
no interest b. Then the log likelihood is given by

lnL(Bx|a, b) =∑ lnP (xi|a, b) (7.10)

For example, a could be the branching ratio to a rare decay channel, and b
could be a property of the background distribution. a could be sin 2β and b
could be the resolution in z.

If the probability distribution for the b parameters is known, typically
as Gaussians with certain means and standard deviations, they can, in a
Bayesian treatment7.1.2, be integrated over[15].

L(Bx|a) =
∫

L(Bx|a, b)P (b) db (7.11)

The integral can be done by Monte Carlo techniques, generating N values of
b with the right properties, {b1 . . . bN}, and using

L(Bx|a) = 1

N

N∑
k=1

L(Bx|a, bk) (7.12)

as the likelihood whose properties are studied. This nicely includes our a
priori information about the values b with the knowledge gained from the
actual fit. If the systematic errors are known (from their determination)
to be correlated, then the N values are generated by finding the rotation
which diagonalises the covariance matrixVb, and then applying that to a set
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of independent Gaussians to generate values with the correct correlation. (In
some cases the σ values may be altered in the light of superior information,
while maintaining the correlation matrix.)

An alternative technique is to include in the likelihood the χ2 contribution
for deviation(s) of the b parameter(s) from their central value(s) b0 [22].

lnL′ =
∑
i

lnP (xi|a, b)− 1

2
(b− b0)

TV −1
b (b− b0) (7.13)

(which includes the case where b is known only from the data if V is zero).
In such cases the fit gives a set of likelihood contours, and the error(s) on

the quantities of interest a are read off by projecting the distribution(s) in
the uninteresting quantities b onto their axes.

It may be desired to separated this combined error (which is quite satis-
factory) into statistical and systematic parts. This is a slightly questionable
procedure. Neverthless the question ‘What would the errors be on a if I
knew b?’ has (even though this may be impossible to achieve technically) a
perfectly good answer: these are given by the intersection of the likelihood
contours with the b axes, and can be found by fixing the b values. [22].

It is then possible to express the ‘systematic error’ as the difference in
quadrature between the total error and the reduced error obtained by this
means. However this is not a very useful quantity, and is of dubious validity
as the errors are typically ‘large’ , invalidating the linear combination of
errors formula. [19] and it is probably better to emphasise the total error in
giving results, rather than present it as the sum of such parts.

7.6 Incorporating systematic uncertainty into

a limit

It often happens that a limit is desired, but the presence of a systematic
uncertainty complicates the analysis. We recommend taking an approach
which is consistent with the more general recommendations of this chapter.
Thus, we do not recommend some of the ad hoc approaches that have some-
times been employed (e.g., evaluating the limit using a correction term with
a ±1σ in the systematic). While not recommended, such methods are not
necessarily “bad”, and indeed can be used as a check on the robustness of
the result – if the result shows great sensitivity to the methodology, then this
should be understood.
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In the typical, well-behaved (i.e., approximately normal) case, the sta-
tistical and systematic uncertainties are added in quadrature, according to
the general recommendation at the beginning of this chapter. The resulting
uncertainty is then treated as a single normal error in obtaining the limit.

A more difficult, but still common situation is the low statistics case,
where the statistical uncertainty should be treated with Poisson errors. This
uncertainty will typically dominate over the systematic uncertainty, but the
systematic should be incorporated into the limit, unless it is completely neg-
ligible. Again assuming that a normal approximation for the systematic is
reasonable, the recommended procedure is to fold the Poisson distribution
with a normal distribution for the systematic uncertainty.

This is a (see section 7.1.2) mix of frequentist and Bayesian argument. It
is the approach taken by Cousins and Highland [16] who expand the gaussian
integrals and obtain

L′ = L(1 +
L−N

2
σ2
r)

where L is the upper limit obtained without considering systeamatic errors, N
is the number of events on which it is based, and σr is the relaitive systematic
uncertainty in the efficiency/acceptance factor.

Example 7.19:Cousins and Highland in use
If you observe 3 events then the 90% upper limit has the value 6.68. If the
branching ratio to be obtained from this limit through B = N/S is also
uncertain due to a 10% uncertainty in the scaling factor S then according to
the formula the limit value increases to 6.81.

For example, suppose that we are estimating a branching fraction by
counting decays into the desired channel (e.g., B0 → γγ):

B̂ = An, (7.14)

where n is the number of observed decays, and A is the appropriate factor
for efficiency and number of parent particles. A is evaluated with some
(systematic) uncertainty. Presuming a normal approximation is a reasonable
model for this uncertainty, the overall pdf for random variables A and n is:

p(n,A;B) = e−B/A0
(B/A0)

n

n!

1√
2πσA

exp

[
−1

2

(
A−A0

σA

)2
]
, (7.15)
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where B is the actual branching fraction, and A is sampled from anN(A0, σA)
distribution.

A prescription for obtaining a 90% confidence level upper limit on B is
then

1. Pick a B (arbitrarily, but near the expected limit).

(a) Generate a value A0 according to N(A, σA).

(b) Generate n according to a Poisson with mean B/A0.

2. Ask how often the n thus sampled is larger than the observed value of
n in the experiment.

3. If this probability is 0.10, averaged over many samplings for A0, then
quote B as the 90% confidence level upper limit on the branching frac-
tion.

4. Iterate, until the desired value of B is obtained.

This can be achieved through a Java program on the Statistics Group
web page.
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Chapter 8

Bayesian Statistics

8.1 Introduction

In the previous chapters, we have largely been concerned with the analysis
and presentation of the information content in the data, of relevance to any
chosen physics topic. Of equal importance is the issue of how to use this
information to make inferences concerning physically interesting conclusions.
This is the subject of the current chapter, and a shift in thinking is required
to address the transition in goal. Thus, while frequentist statistics has been
appropriate so far, as a means of summarizing information content, it is
inadequate to the task of making decisions based on that information. This
new enterprise is the domain of Bayesian statistics, in which it is attempted
to describe what we think to be the degree of “truth” of a statement about
physics.

For example, we are taking data which contains information concerning
the value of sin 2β. We might summarize such data with a central value and
confidence interval (leaving off issues of systematic uncertainties for simplicity
here): sin 2β = A ± B. Perhaps we’ll get the result that sin 2β = 1.1 ± 0.4
in our experiment. A question of physical interest, given the result, is: “Is
sin 2β different from 0?” It is procedures to answer questions of this sort
that the present chapter addresses.

It can be argued that these issues needn’t be addressed here. The point-
of-view could be taken that the duty is done once the information in the
measurement is presented. It is left to the reader to decide on the physical
implications. This is not an unreasonable attitude, and can be taken as
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defining the minimum which should be presented. However, the reader is
probably interested in knowing the conclusions of the experimenters, who
are in many ways best-equipped to provide the interpretation of the results.
In any event, they can’t resist doing it, hence it is important to try to do it
with methodology that has desirable properties.

We note that we are adopting the “subjective Bayesian” interpretation.
It is also possible (perhaps discarding the notion of degree-of-belief), to add
some additional principles to guide the choice of prior distribution. This is
the “objective Bayesian” approach, which we do not discuss.

8.2 General Methodology

The basic tool to be applied to the decision problem is the Bayesian poste-
rior probability, formed from the likelihood function and the Bayesian prior
probability. If the problem concerns the value of an unknown parameter θ,
this takes the form:

P (θ; {x}) = L(θ; {x})P (θ)∫
L(θ; {x})P (θ)dθ ,

where {x} represents the measurements from the experiment. The quantity
P (θ), called the “prior”, is the Bayesian prior probability, i.e., is the degree-
of-belief distribution prior to the new results (in the subjective Bayesian
interpretation).

8.3 Choice of Priors

The posterior degree-of-belief depends on both the new information and on
the prior distribution. If there is previous relevant data, or reliable theoretical
constraints, these can be included in the prior distribution.

For example, we may be making a new measurement of a parameter,
which has been measured previously by sampling from a normal distribution
for which the parameter of interest was the mean. If this constitutes effec-
tively the entire prior knowledge, the prior distribution is simply (actually,
it really isn’t quite so simple, but for practical purposes this is the thing to
do):

P (θ) =
1√
2πσ0

exp

[
−(θ −X0)

2

2σ2
0

]
, (8.1)
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if the previous measurement was with standard deviation σ0, and sampled
a value X0. If the new experiment also samples a result from a normal
distribution, with mean equal to θ, and standard deviation σ1, then, for a
result X1, the posterior distribution is:

P (θ;X1) =
1√
2πσ

exp

[
−(θ −X)2

2σ2

]
, (8.2)

where X is given by the usual weighted mean:

X =

(
X0

σ2
0

+
X1

σ2
1

)/
1

σ2
, (8.3)

and:
1

σ2
=

1

σ2
0

+
1

σ2
1

. (8.4)

It may be noted in this example that the posterior distribution is the
same as the posterior distribution obtained by regarding the measurements
in a different way: We could view the two experiments, with results X0 and
X1 as instead a single experiment, sampling from a two-dimensional joint
pdf. With a prior distribution which assigns a uniform probability on θ, the
posterior distribution of Eqn. 8.2 is again obtained.

The example above gives a glimpse of one of the most controversial aspects
of the Bayesian methodology. How do we specify the prior representing the
degree of belief prior to any relevant data? How do we express “complete
ignorance” of the value of a parameter? In the example, we chose a uniform
prior in θ, assigning equal prior probabilities to each possible value (in this
example, the result is an improper probability distribution, but this is not
an essential complication, since the normalization is divided out).

One apparent problem with this choice is that it is not parameterization-
independent: If we make this choice, but then decide we are interested in
1/θ, the prior for 1/θ is not uniform. Another apparent difficulty is that
our true prior degree of belief will typically incorporate other knowledge in a
not-well-defined (and probably subjective) way, but so that a uniform prior
is not an accurate representation. For example, we may be quite confident
that θ is a “small” number compared with 10324.

There is a large literature which deals with these issues, and some al-
gorithms have been proposed, based on additional principles. However,
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these algorithms tend to have the difficulty that they are not distribution-
independent: The prior distribution to be assumed depends on the sampling
distribution of the subsequent measurement. This is philisophically trouble-
some, because it suggests that our prior degree of belief describing ignorance
depends on the way we are going to do an experiment.

One way to address this difficulty is to recognize that we (always?) have
some information or prejudice which shapes our prior degree of belief differ-
ently from “complete ignorance”. Thus, a suitable group of individuals could
get together and consider the implications of what is known to arrive at a
“consensus prior”. This is certainly not a rigorous procedure, but is perhaps
the best that realistically can be done.

It may finally be remarked that, if the choice of prior within the realm of
this discussion actually makes a significant difference in the posterior distri-
bution, it may be an indication that the new data is of little relevance (i.e.,
is non-informative) to the question.

8.4 When Do We Have a Signal?

The question: Is there a signal? is a yes/no question which can be phrased
in terms of an hypothesis test (H1 : There is a signal; vs. H0 : There is no
signal.). But it is important to recognize that the question is being asked
here in the decision sense, i.e., we are trying to give our degree-of-belief
concerning the answer. Hence, a Bayesian treatment is appropriate.

If it is supposed that the possibility of mistakes has been dealt with, the
question of significance in terms of statistics may be asked. The available
tool is the Bayes posterior distribution, describing our degree-of-belief as a
function of (for example) possible parameter values. Hence, we may evaluate
a “Bayesian acceptance region”, at significance level α, by finding the set A
such that

α =
∫
A
P (θ; {x})dθ, (8.5)

where

P (θ ∈ A; {x}) > P (θ �∈ A; {x}). (8.6)

It is then a matter of policy to choose a significance level at which a signal
is to be claimed. Note that we may have chosen not to fold the degree of
prior belief in a non-null result into the prior, although we could attempt to
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do this. Thus, the choice of significance level will depend on how surprising
the result is. The point of this is that for a more startling result the chance
that it is due to a statistical fluctuation is greater.
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Part II

Recommended Procedures
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Chapter 9

General Recommendations

9.1 General Principles

There are a number of general guidelines and principles which we list here:

1. Whatever methodology is used, it should be clearly presented, so that
the reader can understand what was done. If the technique is based on
some published material, a reference should be given.

2. It should be anticipated that someone may wish to compare and/or
combine the result with other information. Thus, enough information
must be given to permit this, e.g., systematic uncertainties may need
to be quoted separately.

3. Related to the preceeding item, is the recommendation that whatever
“physically relevant” quantity is quoted as a measurement, it is usu-
ally desirable to also give as close as possible the “actually measured”
quantity. For example, the number of events in some mass peak (and in
the background underneath) should be quoted, as well as the branching
fraction derived therefrom. For another example, the raw numbers of
events (and estimated backgrounds, and potentially with and without
efficiency corrections) used for the extraction of Vub should be given, as
well as the procedure used in going from these numbers to the value of
Vub.

4. It should be kept in mind that the sampling distribution is in general
only approximately known, and there can be long “tails”. Thus, robust
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methodologies are desirable, even at the cost of sufficiency or power.

5. It is useful, at least in one’s thinking, to separate the presentation of
“results”, from the discussion of their “implications”. By “results”
is meant the information content of whatever measurement has been
performed. By “implications” is meant the relevance to statements
about physics. See the next section for an expanded discussion.

6. An important general principle, but one which is sometimes difficult to
follow, is that the “experiment design should precede the experiment”.
For example, the criteria for claiming a signal should be decided before
looking at the mass plot. Further, the temptation must be resisted to
“tune” one’s analysis until some desired result is achieved. While this
principle is sometimes nearly impossible to practice, it should be kept
in mind that not following it has sometimes led to disastrous results.
An example of experiment design is the blind analysis.[2]

7. A corollary to the previous point is that we should avoid the potential
bias introduced by basing the decision to publish on the result of an
analysis. Again, there are practical issues in implementation, but the
concern is real (the effect has been observed of published branching
fractions starting out high).

9.2 Bayesian and Frequentist Statistics

Because of the substantial confusion among particle physicists concerning the
subjects of “Bayesian” and “frequentist” (or “classical”) statistics, a brief
discussion is appropriate.

An intuitive way to think about these two branches of statistics is to
regard the frequentist approach as being directed at summarizing relevant
information content in a dataset; whereas the goal of the Bayesian is to infer
something about the underlying sampling distribution. Thus, it is useful to
connect the notion of “information” with the frequentist, and the notion of
“decision” with the Bayesian. Of course, like any good decision-maker, the
Bayesian uses whatever information is available, but the difference is that
the Bayesian doesn’t stop there. Instead, s/he proceeds to a conclusion cor-
responding to a “degree-of-belief” concerning the “truth” of some statement.

83



It may be argued that the first goal of an experimenter is to summarize
the information contained in the data, as objectively as possible. The (fre-
quentist) approach to achieving this goal consists of making some statement
which has the property that it would be true in some specified fraction of
trials (repetitions of the experiment), and false in the remaining fraction. It
is important to realize that the frequentist typically doesn’t know or care
what the truth value is for any given sampling.

As the experimenter happens to also be a physicist, a second goal is to
summarize what s/he thinks the “truth” really is, based on the information
in the experiment, and perhaps other input. This is the domain of Bayesian
statistics. While the first goal should be a requirement in any publication
of results, the second may be regarded as optional – it can be left to the
readers to form their own conclusions concerning the physical implications of
the measurement, but the reader can’t divine the information, so that must
be presented.

It may be noted that people have sometimes proposed methodologies
which attempt to satisfy Bayesian urges (e.g., never make a statment that is
known to be in the “false” category), while maintaining frequentist validity.
This may be a noble goal, but the resulting methodologies are not especially
attractive for various other reasons, and such algorithms are not advocated
here. Instead, it is simply admitted that there is more than one goal, and
that different techniques may be optimal for each.

The Statistics Working Group has tried to keep these notions in mind
in the recommendations that follow. Thus, the next several chapters deal
primarily in frequentist statistics, and the final section, on interpretation of
results, deals more in Bayesian statistics.

9.3 Notation

The notation “χ2” should be reserved for random varibales which are dis-
tributed according to the χ2 probability distribution, or for the quantity
which is minimized in a least-squares fit, if that quantity is distributed to
a reasonable approximation by the χ2 distribution. Use of the χ2 notation
in other instances should be avoided. In particular, using this notation as a
substitute for a general −2 lnL quantity should be avoided. Note that a χ2,
as a sum of squares, can never be negative.
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9.4 Number of Significant Places

When quoting a result, it can be cumbersome and even misleading to give
too many significant digits. The following are some recommended procedures
in this area. Where the Particle Data Group has a policy, we are adopting
it below [26].

1. Results and errors should be quoted to a consistent number of places.

2. Error estimates should be given to two significant digits if less than
0.355 (up to the appropriate factor of ten), and one digit otherwise.
For examples, we should quote:

1.97± 0.33

and also:
2.0± 0.6

. If the errors are asymmetric, they should be quoted to consistent
places, and the smaller error prevails in determining how many. For
example:

1.97
+0.61

−0.33 .

3. Limits should be quoted to one or two digits based on the same criteria.
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Chapter 10

Analysis Design –
Recommendations

10.1 Introduction

Being able to rely on statistical procedures depends on good design of an
analysis. The design of an analysis can also have a large impact on how
informative a result may be obtained. Thus, the purpose of the present
chapter is to look at some of the issues in obtaining good analysis design.

Currently, this chapter is a place holder. The Statistics Working Group
felt that recommendations in this area would be useful, but the initial effort
was aimed at areas which were more directly included in its charge.
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Chapter 11

Confidence Intervals–
Recommendations

Interval estimation may serve two purposes:
(a) to summarize the information in the experimental result, or
(b) to summarize the physical interpretation of the result.
We recommend to stick completely to the frequentist methods of interval

estimation in case (a), and to Bayesian interval estimation in case (b).
As a basic example, a fit result of sin 2β = 1.12 ± 0.13 should define a

68% confidence interval for sin 2β in the sense that among all experiments
measuring this quantity, for 68% the true value is within the quoted interval,
and for 32% it is outside. A 95% CL interval for the same result would
(approximately) state 0.86 < sin 2β < 1.38.

On the other hand, we may want to give a 95% CL interval with a
lower limit on sin 2β which includes the mathematical constraint that −1 ≤
sin 2β ≤ +1. This is already an interpretation of the pure measurement,
since an external constraint is added to the experimental information. Here,
we suggest to use Bayesian methodology and calculate a lower bound l on
x = sin 2β by

0.95 =

∫ 1
l L(x|1.12, 0.13)dx∫ 1
−1 L(x|1.12, 0.13)dx

where x = sin 2β and L is the likelihood function evaluated for the fit result
and error. We then give l < sin 2β ≤ 1 with 95% CL. Note that in this
case, we have chosen to use a uniform prior, within the interval [−1, 1]. This
methodology is elaborated in chapters 8 and 15.
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11.1 Specific Recommendations

We list now a number of simple recommendations for determining and quot-
ing confidence intervals:

1. If an interval is quoted without explicit definition, it should be a 68%
confidence interval (or good enough approximation), in the frequency
sense. Note that a one standard deviation interval is not necessarily a
68% confidence interval (the sampling distribution may not be normal).

2. “Two-sided” intervals should be quoted whenever possible. One-sided
intervals (“limits”) may optionally be quoted in addition. The confi-
dence level of a one-sided interval should always be given, but common
practice of quoting a 90% confidence limit should usually be followed.

3. If the Gaussian approximation for the sampling distribution is valid,
evaluating confidence intervals either by finding the points where ∆χ2 =
1 or where ∆ lnL = −1/2 is recommended. If the Gaussian approxi-
mation is not valid, then:

(a) After consideration, it may be determined that the Gaussian ap-
proximation is good enough, and the above methods used.

(b) After consideration, it may be concluded that the Gaussian ap-
proximation is not good enough. In this case, a calculation based
on the sampling pdf should be made (perhaps with a Monte Carlo)
in order to understand how to estimate an interval. A possible out-
come is that the above methods may be applied, but with different
values for the changes (e.g., instead of a change of 1/2 in lnL, per-
haps the change corresponding to a 68% confidence interval will
be found to be 0.7). Of course, a description should be given.

4. The “parabolic” errors produced by programs such as MINUIT may be
used to estimate a 68% confidence interval if one is confident that they
are a sufficiently accurate approximation. The same statement applies
to use of the first-order formula for propagation of errors. Incorporation
of possible correlations in multi-variate situations should be followed.
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5. The method of finding an interval containing a given fraction (e.g.,
68%) of the area under the likelihood function is generally not recom-
mended, though it can produce valid (in the frequency sense) confi-
dence intervals in some circumstances.[27] This method is, of course,
the recommended procedure if a Bayes interval is desired.

11.2 Discussion of Case of “Physical Bound-

aries”

Often we are interested in some physical parameter, such as a mass, which
cannot take on certain values, e.g., cannot be negative. Because of detector
resolution, it may happen that the sampling distribution used in the mea-
surement has a non-zero probability for values outside this physical region to
occur. Of course, there is nothing “unphysical” really happening, but people
sometimes get very concerned about quoting the result of a measurement in
the “unphysical” region. In particular, general methods have been proposed
(e.g., Ref. [5]) which generate confidence intervals which lie entirely within
the “physical” region. We do not recommend the use of such methodologies,
but because of their acceptance by some researchers, we here explain our
reasons.

First, the motivation to quote an interval in the so-called physical region is
actually irrelevant in frequentist statistics, as it has to do with interpretation
of the results rather than summarizing the information content. The desire
to keep the interval in the physical region, as a reflection of what we believe
to represent a probability statement about the “true” value of the parameter,
leads us naturally into Bayesian statistics. If that is the goal, we should just
admit it, and be Bayesian. It should be noted that the intervals obtained
by the Feldman-Cousins (and similar) methodology will not, typically, be
the same as the intervals obtained in a Bayesian analysis, even though the
“physical” constraint is satisfied.

Second while the proposed methods do yield valid (frequentist) confidence
intervals, they are in fact completely equivalent to the confidence intervals
as we usually calculate them, in the sense that the information content is
the same (and there exists a 1:1 mapping between them). However, as a
means of summarizing the information, these proposed intervals are rather
less straightforward. For example, if an observation is far into the “unphysi-
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cal” region (it’s not really unphysical, of course), then it seems counterpro-
ductive to obscure that fact.

Another objection that has been made to, e.g., the Feldman-Cousins
method, is simply that it is not, in general, especially easy to calculate.
Finally, the objection has been made that this methodology raised further
difficulties with respect to combining results.
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Chapter 12

Hypothesis Tests–
Recommendations

12.1 Significance of a “Signal”

The significance of a signal is best quoted as a probability for the observation
to be consistent with no signal. It takes some judgement to decide what
probability to evaluate for this, but in general the idea is to evaluate the
probability that the no-signal model can give a “fluctuation” as large as, or
greater than, that observed in the data.

We note that simply giving a number for a “significance level” may result
in confusion. Thus, whenever a “significance” is quoted, the definition of the
quantity used should be given.

If the normal distribution is a reasonable implication, then quoting sig-
nificance as a “number of sigma” (deviation from the no signal hypothesis)
can also be used. On the other hand, if the normal distribution is not a good
approximation, then this should not be done, as it will tend to be misleading.

A common case is when there is a small number of events, where the Pois-
son distribution should be used. The significance should be calculated as the
Poisson probability for the background to fluctuate to the observed number
of events, or more. But this should not be applied blindly – the question
should first be asked whether the background estimate is reliable or not. If
the background estimate is deemed reliable, but the estimated value has a
significant statistical uncertainty, then the probability distribution describ-
ing the background estimate should be folded into the computation of the
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significance of the “signal”. Sometimes a Monte Carlo is the most convenient
way to perform the calculation.

Another common case is when changes in a χ2 variable, or changes in
−2 lnL, are used to determine significance. To use these methods properly,
either it must be known that the normal approximation is valid, or alterna-
tively, a caculation (e.g., by Monte Carlo) must be performed to understand
the distribution expected for these variables under the null (no-signal) hy-
pothesis.

Methods involving integrals of the likelihood function should similarly be
first understood probabilistically, or alternatively relegated to the domain of
an explicitly Bayesian analysis (see Chapter 15).

12.2 Fits

Doing a fit to some data typically involves varying parameters until a “best
fit” is obtained. A discussion of this is in place under the heading of testing
hypotheses, because a model is involved, which may or may not be a valid
description of the data sample.

1. When performing a least-squares fit to binned data, beware of programs
such as PAW when fitting to low-statistics data. PAW’s default cal-
culation is incorrect; it ignores bins with no events. When performing
such a fit to data which may have low bin contents, a safe procedure
is to combine bins with especially low event counts, until a minimum
count is reached. A reasonable minimum for Poisson data is to require
at least seven events per bin. If this procedure is followed, then the χ2

goodness-of-fit statistic will generally be a good approximation, making
sure the number of degrees of freedom is properly computed.

2. A maximum likelihood fit to binned event data is preferable to a least-
squares fit if the statistics are low.

3. If it is important not to lose the information from combining bins (or
from using bins which are wide compared to interesting structure), the
least-squares method is not appropriate (or possibly even a binned like-
lihood fit). Instead, an unbinned fit to the individual event distribution
should be performed. The maximum likelihood method is typically an
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excellent way to proceed in this case. Goodness-of-fit may be evalu-
ated using a likelihood ratio statistic [see 6.1.3]. A Monte Carlo may
be required to understand the sampling distribution of this statistic,
however.

4. A graphical display of a fit result (i.e., a fitted curve superimposed on
data) is highly recommended. This provides a way to visually check
that a sensible result is being obtained.

5. When using the results of a fit, it is important not to lose sight of as-
sumptions which might have been made, such as restrictions on back-
ground shape. A corresponding evaluation of systematic uncertainties
should be made.

6. When quoting a χ2 goodness-of-fit statistics, the χ2 and the number
of degrees of freedom should both be given, so that the reader can
evaluate the confidence level. Quoting χ2/nDOF is not recommended.
Alternatively, the χ2 confidence level may be given.

12.3 Consistency of Correlated Analyses

It often happens that two analyses for the same result, on overlapping datasets,
exist. The results will usually not be identical, and the question arises as to
whether the difference is consistent with being due to statistical fluctuations,
or whether there is evidence for a problem with one or both of the analyses.
We address this issue in the following recommendations (see section 6.3 for
further discussion):

1. Often the results of the two analyses are expressed as estimators, θ̂1

and θ̂2, respectively. In this case, a suitable statistic to use in testing
for consistency may be the difference, ∆θ ≡ θ̂2 − θ̂1. The test for
consistency is based on the joint pdf for the two results, q(θ̂1, θ̂2; θ).
The sampling distribution for ∆θ is evaluated according to (there may
be additional dependence of the distribution on parameters, including
θ):

p(∆θ) =
∫ ∞

−∞
q(x, x+∆θ) dx.
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Then the consistency test, for any given observed value of ∆θ is per-
formed by computing:

α = 1−
∫ ∆θ

−∆θ
p(x)dx.

α is the probability that we would observe a difference greater than
the observed difference, due to statistical fluctuations. If α is bigger
than some number then we conclude all is well, if not, we worry that
something might be wrong. A value of 0.05 is suggested for this test. If
multiple tests are being made, then that should be properly accounted
for in the evaluation of overall significance.

2. In testing for consistency, proper accounting for any correlations should
be performed. If this is deemed too difficult, or not worth the effort,
then limiting cases might be considered as a crude check. For example,
if the sampling distributions are approximately Gaussian and the cor-
relation coefficient, while unknown, is believed to be non-negative, then
the difference can be compared with the range of standard deviations
permitted: |σθ̂1 − σθ̂2 | to

√
σ2
θ̂1
+ σ2

θ̂2
.

3. It may be possible to estimate the correlation by looking at the behavior
in a related “control sample”.

4. The systematic uncertainties should be evaluated as appropriate in
each analysis. The existence of more than one analysis may be used as
a “check” for mistakes, but no new systematic uncertainty should be
assigned to cover the difference between the two analyses.

5. If there are systematic uncertainties which differ for the two analyses,
these should be incorporated into the consistency test. If possible, any
common systematic should be separated out, leaving only the “inde-
pendent” systematics, call them sx1 and sx2. Then it is reasonable to

assign a systematic uncertainty of s∆θ =
√
s2
x1
+ s2

x2
to the difference,

similarly to the result for uncorrelated statistical uncertainties. If it
is too difficult to separate out the common systematics, then the best
one can do is embark on a treatment similar to the discussion for the
unknown correlation in the statistical errors.
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Chapter 13

Graphical Presentation–
Recommendations

This section deals with the graphical presentation of data and the results
of an analysis, and in particular, provides recommendations for the presen-
tation of statistical content. We also offer some general guidelines for clear
presentation that go beyond statistical considerations.

13.1 How to Display Data

By “data”, we mean a set of measurements { Bxk}nk=1 whose distribution is
modeled in an analysis. The elements of this set often correspond to selected
events, but could equally be anything countable. For example, candidates of
some type (with possibly more than one per event), or even sets of events
(e.g., runs).

13.1.1 Histogram Errors

The most common graphical presentation of data is a histogram of the dis-
tribution of one variable y = f(Bx). Each bin, labeled by the index j, has a
full width, ∆yj , centered on yj, and contains a non-negative integer number,
nj , of data elements. Figure 13.1 illustrates the following recommendations:

1. The horizontal axis label should describe the variable y (e.g., “Decay-
Time Difference, ∆t”) and specify the units in which it is measured
(e.g., “ps”).
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2. The vertical axis label should specify the basic unit of the data (e.g.,
“Events”) and how the number of events in each bin, nj , is normalized
in the plot (e.g., “/ 0.1 ps”). In the case of equal-width bins, the
normalization ∆y, should generally be to the common bin width.

3. The contents of each bin should be represented with a point at (yj, nj ·
(∆y/∆yk)) and an error bar that represents the “1-sigma” (68% con-
fidence level) interval of the expected number of events given the ob-
served number.

4. Horizontal error bars are discouraged for equally-spaced histograms,
but recommended for unequal bin spacing (this convention clearly sig-
nals the different approaches). Horizontal error bars should cover the
full width of the bin when used. In some cases, it may be useful to
plot the point at the horizontal center-of-gravity of the data, with an
error bar given by the rms variation. If this is done, it should be clearly
explained in the caption.

The calculation of an appropriate error interval, as recommended in point
3 above, deserves more attention. We assume that the probability density
for observing n events in a bin as a function of the expected number, ν, is
described by the Poisson distribution

P (n ; ν) =
e−ν νn

n!
.

The left-hand side of Figure 13.2 shows this distribution for n = 5 and
compares it with the Gaussian distribution of mean 5 and r.m.s.

√
5 that is

often (incorrectly) assumed instead.
An error bar extending from n to n ± δn corresponds to a one-sided

interval of confidence level

α± = ±
∫ n±δn
n

P (n ; x) dx =
±1
n!

(Γ(n+ 1, n± δn)− Γ(n+ 1, n)) .

The right-hand side of Figure 13.2 compares the confidence levels of Poisson
and Gaussian distributions for n = 5 as a function of x = n± δn. Note that
the Gaussian confidence levels are symmetric but that the Poisson confidence
levels are larger above than below n at any given δn.

Ideally, we would like α− = α+ � 34%. This generally leads to error
bars that extend further on the low side than the high side, as shown in
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Figure 13.1: An example histogram demonstrating the recommendations for
labelling axes and representing bin contents.

Figure 13.3. However, for n = 0 or 1, this is not possible since the total
cummulative probability below n is less than 34%. In this case, we settle for
α− + α− � 68% by fixing the lower bound of the error interval at zero and
integrating up to the desired total confidence level. This leads to error bars
for n = 0 and 1 that extend further on the high side than the low side, as
shown in Figure 13.3.

Although the correct pdf for calculating binned errors is Poisson, it is
common practice to assume Gaussian statistics which yield symmetric errors
and are equivalent to Poisson errors at large n. In order to quantify the dis-
crepancy between a Gaussian error interval (m1, m2) and the corresponding
Poisson error interval (n1, n2), we define a metric

∆ ≡ |n1 −m1|+ |n2 −m2|
(n2 − n1) + (m2 −m1)
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Figure 13.2: Comparison of Poisson (solid curves) and Gaussian (dashed
curves) probability density functions for the expected number of events given
5 observed events. The left-hand plot compares the normalized pdf’s. The
right-hand plot shows the cummulative probabilities integrated above or be-
low 5.

which is plotted as a function of the observed number of events, n, in the
right-hand side of Figure 13.3. If we specify a maximum discrepancy 2%,
then we require that Poisson errors be calculated for bins containing fewer
than 10 entries. This should be considered as a minimum standard, and
plots should ideally use Poisson errors for all bins. Table 13.1 lists the 68%
Poisson error intervals corresponding to n < 10, for reference.

The following fragment from a ROOT macro (using the BABAR RooFit-
Tools package) provides a practical example of how to present data following
the recommendations made here, and was used to generate Figure 13.1:

RooRealVar mass("mass","Beam-Energy Substituted Mass",

5200,5300,"MeV");

RooDataSet *data= RooDataSet::read("events.dat",mass);

data->Plot(mass)->Draw();
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Figure 13.3: A comparison of Poisson and Gaussian confidence levels used
for calculating binned statistical errors. The left-hand plot compares Poisson
error bars (calculated as described in the text) with symmetric errors of size√
n (dashed curves) that are associated with a Gaussian pdf. The right-hand

plot shows the discrepancy between the Poisson and Gaussian confidence
levels (defined in the text) as a function of the number of entries in a bin.

13.2 How to Display a Fit Model

A graphical presentation of the model used in analysis is most useful when
superimposed on a representation of the data used to determine the model’s
parameters. This combination then provides a visual impression of the good-
ness of a fit.

5. A presentation that combines data and a fit model should be chosen
to clearly and accurately convey the statistical goodness of fit in the
parameters of interest.
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n n− δn n + δn
0 0 1.15
1 0 2.36
2 0 3.52
3 0.86 4.73
4 1.70 5.98
5 2.51 7.21
6 3.32 8.42
7 4.14 9.61
8 4.97 10.8
9 5.81 12.0

Table 13.1: Poisson 68% CL error intervals tabulated for different numbers
of observed events.

13.2.1 Projecting a Model onto One Dimension

13.2.2 Displaying a Model in Several Dimensions

13.3 How to Display a Likelihood Function

13.3.1 Displaying a Likelihood Curve

6. A likelihood curve should be displayed as log(L/Lmax) where Lmax
is the maximum likelihood value corresponding to the best fit of the
parameters to the data. This choice eliminates the somewhat arbitrary
value of Lmax from the plot and allows several related likelihood curves
(with different values of Lmax) to be directly compared.

7. The likelihood ratio should not be scaled by a factor of -2 since there is
no reason to prefer a χ2-style presentation when an unbinned likelihood
fit was used.

8. In the case of a fit to several parameters, the likelihood ratio should be
calculated as log(Lmax(p)/Lmax) where Lmax(p) is the maximum likeli-
hood obtained in a fit with p fixed and all other parameters varying.
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13.3.2 Displaying Likelihood Contours

Provide a table of n−sigma log(L/Lmax) values calculated for different num-
bers of dimensions.

Refer to the MINUIT mncont routine.
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Chapter 14

Systematic Errors–
Recommendations

• Results should always be quoted with a separate statistical and sys-
tematic error. For presentational purposes these may also be combined
in quadrature and given as a single error. In some cases, especially if
this result will be combined with others, it may be appropriate to sepa-
rate systematic errors into components, but this should not be general
practice (see section 7.5).

• As many BABAR measurements will be limited by systematic errors,
their calculation and manipulation should be done on the basis of sound
practice, not folklore. Be able to justify the procedures used,

• Errors in a result due to factors which contain uncertainties should be
considered as systematic even if those uncertainties are in themselves
basically statistical, provided the sample on which they are based is in-
dependent of the sample from which the result is obtained (see sections
7.2.1, 7.5.2).

• Errors in a result due to factors which contain statistical uncertainties,
derived from the same data sample but not of primary interest, should
typically be considerd as statistical (see section 7.5.2.)

• Errors in a result due to factors which contain theoretical uncertainties
may be manipulated in the usual way, but their evaluation is more
uncertain (see section 7.2.2). There will often be no universally-agreed
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‘correct’ value. A full explanation of the methodology you choose to
use should be given, with justifications as appropriate; critical readers
may then apply alternatives if they so wish. The following techniques
may be used in evaluating such ‘theory errors’.

– Errors cited by theorists may be used. At least two estimates
should be obtained, and the experimenter should then use their
own judgement in selecting a value, and should be free to increase
or decrease it if it is believed there is reason to do so.

– Several different models may be used, and the spread of results
used to give an error. How you do this depends on your judgement
of the model credibilities- for examples see section 7.2.2. It may
be appropriate to quote different results for different models.

– Taking the error as the difference between the results of two mod-
els divided by

√
12 can only be done if the two models represent

opposite extremes of the effect in question, and if the effect can
reasonably be expected to lie anywhere in between them (see sec-
tion 7.2.2.)

• In combining uncertainties, the correct covariance matrix must be used,
or, if unavailable, best possible estimate (see section 7.3).

• Uncertainties in parameters that are incorporated in the fit in a com-
plicated way are not amenable to treatment by algebraic manipulation.
The errors that arise from them must be evaluated by altering the pa-
rameter values and repeating the fit. This should generally be done
by taking half the difference between the result values from plus and
minus one standard deviation of the parameter, unless there is reason
or evidence to believe that the errors are asymmetric.

• Asymmetric errors should be given with their sign, so that correlations
can be followed.

• Asymmetric errors should be combined by adding the positive and neg-
ative values, separately, in quadrature.

• The Likelihood function may be a good way to explore the effects of sys-
tematic errors, especially if event numbers are small (see section 7.5.3).
The errors quoted should be those at which the log likelihood falls by
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0.5 (for 1 dimension); if these are inconsistent with those obtained by
other means (e.g. half the values for which it falls by 2.0, or those
obtained from a 68% integral) then the full likelihood function should
be given.

• The robustness of any result should be established by many checks (see
Section 7.2.3). These would typically include

– Inclusion/exclusion of appropriate parts of the data, depending
on running conditions.

– Variation of important cuts

– Different fitting techniques

– Performing a similar analysis for which the result is known before-
hand, on logical grounds or from previous experiments.

– A full consistency check on a simulated data sample.

It is important to distinguish between such blind checks, for which
no effect is expected and which are used to detect mistakes, and the
educated checks used to detect biases / estimate corrections. (For illus-
trative examples see section 7.2.3.)

The result of a blind check should be considered carefully to ascertain
whether it is significant. If it is not, then no further action need be
taken – it should not contribute to the systematic error. If it is, this
indicates a mistake in the analysis, which should be searched for and
(ideally) located and corrected. Only if this is unsuccessful should the
systematic error should be inflated as a last and desperate resort,

• The full consistency check on simulated data will usually be a blind
check, and the above argument applies to it equally, nevertheless we
advocate that any discrepancy be added in quadrature to the system-
atic error (see section 7.2.3).

• To incorporate a systematic error into a limit in the typical, well-
behaved (i.e., approximately normal) case, the statistical and system-
atic uncertainties are added in quadrature, according to the general
recommendation at the beginning of this chapter. The resulting uncer-
tainty is then treated as a single normal error in obtaining the limit.
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• To incorporate a small systematic uncertainty into a low-statistics limit
the Cousins and Highland formula can be used.

L′ = L(1 +
L−N

2
σ2
r)

For definitions see section 7.6.

• To incorporate a large systematic uncertainty into a low-statistics limit,
a toy Monte Carlo should be used, as described in Section 7.6.
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Chapter 15

Interpretation of Results

15.1 Introduction

When it is desired to interpret a measurement in the context of a statement
about physical “truth”, we recommend adopting the Bayesian methodology.

As discussed in section 8.2, the basic formula for the Bayesian methodol-
ogy, as it pertains to the determination of an unknown parameter θ, is:

P (θ; {x}) = L(θ; {x})P (θ)∫
L(θ; {x})P (θ)dθ .

15.2 Choice of Priors

For perhaps the majority of measurements in BABAR, it will be appropriate to
simply use the frequentist results numerically as also the interpretation. This
is often equivalent to choosing a prior probability distribution (“prior”) which
is uniform in the unknown parameter of interest. This is readily justified
for those results where the information from BABAR is good, that is, any
conclusions are not highly dependent on the choice of smooth prior expressing
ignorance, and the measurement is substantially better than previous results.

However, there will undoubtably be situations where the conclusion is
not so straightforward:

1. The measured result may be near a physical boundary.

2. The measurement may be of comparable (or poorer) precision with
previous knowledge.

106



3. The measurement may have so little information that the choice of
smooth prior makes an important difference.

Dealing with the case of a physical boundary is straightforward: The
prior should be zero for unphysical values of the parameter(s).

The case where previous knowledge is comparable with, or better than,
the information from BABAR should also be typically straightforward: A prior
should be used which encapsulates the previous knowledge. There may be
difficulty if it is not clear how to do this, e.g., if a simple normal approxima-
tion may not be valid, if the systematic uncertainties are substantial, if the
information provided by the earlier experiment is insufficient to formulate a
prior, or if there is disagreement with the methodology used by the earlier
experiment.

Finally, if there is little information content, and the choice of smooth
prior is important, this should be pointed out in the discussion.

The general recommendation on the choice of prior is as follows:

• Express ignorance with a prior which is zero in an “unphysical” region,
and a constant elsewhere.

• If the choice of how ignorance is expressed makes a difference to the
result, say so, with an example.

• Prior experimental information should be included according to the
posterior from such experiments. Typically, this will take on the form
of a normal distribution with standard deviation obtained by adding
statistical and systematic errors in quadrature as done by the Particle
Data Group, including a scale factor if appropriate. Care must be
taken, of course, to separate out common systematic uncertainties.

15.3 When do We Have a Signal?

The question “Is there a signal?” may not be only a “statistical” one: We
must be open to the possibility that we have made a mistake (an a priori
more likely prospect the more startling the result). A critical examination of
the experiment and analysis design, and of the available cross checks must be
made to evaluate this possibility. A large amount of judgement is required,
and only general guidelines can be given:
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• Was the analysis pre-determined? That is, were the cuts established
prior to looking at the data? It not, there may have been tuning of
cuts giving a biased result.

• How much “searching” was involved? If a lot of distributions were
looked at, the signal may be just a large fluctuation that is not so im-
probable given the extent of the search. This again, is better evaluated
(i.e., statistical methods can be used) if a careful design was originally
carried out. If it was not pre-determined how much searching would go
on, considerable judgement is required to evaluate the significance.

• Does the purported signal show expected behavior? One check is to
look at what is cut out, and see whether there is structure in the op-
posite direction from the signal in the discards. If so, the signal may
be an artifact.

If it is supposed that the question of mistakes has been dealt with, the
question of significance in terms of statistics may be asked. The significance
may be computed either in frequentist terms or in Bayesian terms, but if the
ultimate question is whether to claim a “significant” effect, some policy is
required an answer to be given.

The statistics working group has grappled with possibilities for such a
policy. The current stance is not to make such a recommendation, i.e., not
to specify cuts on significance level for discriminating between claim of a
signal or not.

Instead, it is recommended that the situation be quoted in such a way that
the reader can decide. For example, instead of saying “We observe a signal
for B → 3π”, say “We observe B → 3π at the 1% significance level.” Or,
instead of “We have observed CP violation in B decays”, say “The measured
value of sin 2β is different from zero at the 6% significance level.” A corollary
is that language in titles of the form “Observation of. . . ” is discouraged, as
well as adjectives such as “first”.
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Appendix A

Charge to the BABAR Statistics
Working Group

September 8, 2000
DRAFT 2

The BaBar experiment has begun presenting results at conferences, and
will soon be preparing papers for publication. It is important that the results
be presented as objectively as possible and with sound statistical procedures.
Thus, the “Statistics Working Group” is charged with establishing a set of
recommended statistical methods for use in quoting the results of BaBar
analyses.

Questions that should be addressed include:

I. Confidence Intervals:

A. What are recommended procedures for computing confidence in-
tervals?

B. What are the criteria for choosing to quote one-sided or two-sided
confidence intervals?

C. How should we incorporate systematic uncertainties? [See also
below.]

II. Hypothesis Testing:

A. What are recommended procedures for evaluating “goodness-of-
fit”?
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B. How do we determine the “significance” of a new result, e.g., of
a possible signal? [Including, how to deal with systematic uncer-
tainties? See also below.]

III. Graphical Presentation:

A. What are recommendations concerning when and how to display
statistical information graphically? [For example, plots of likeli-
hood, chisq, contours.]

B. How should we deal with systematic uncertainties in graphical
presentations? [See also below.]

IV. Systematic Errors:

A. What types of uncertainties should be identified as “systematic”?

B. How should we quote results with systematic uncertainties? [Note:
A key consideration here is that people should be able to eliminate
irrelevant common systematics in comparing quantities such as
branching fractions.]

C. What are the recommended procedures for combining results, with
proper attention to common sources of uncertainty?

V. Interpretation of Results:

A. Given a measurement, what procedures are recommended for ar-
riving at a physical interpretation? [That is, given the relevant
information content from the experiment, how do we formulate
a physics conclusion? The point of this item is that the work-
ing group should consider the distinction between summarizing
information, and arriving at physical conclusions. For example,
a Bayesian methodology may be appropriate in the latter case,
while not in the former.]

B. What are the recommendations for prior distributions?

C. When do we claim a “signal”? [Note: Criteria may differ depend-
ing on whether it amounts to a measurement of an “expected”
effect vs. the announcement of a new ”unexpected” effect.]
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These questions should be addressed, as far as possible, with explicit
practical procedures. These may differ depending on issues such as sample
size, presence of background, and whether the measurement is “statistics-”
or “systematics-” limited.

The discussions of the working group should be open to the collaboration.
The report should be available from the web. A first draft should be available
for comment by the December collaboration meeting.
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